Coсудистая кальцификация: значимость в пато­­ге­­­незе, диагностике, клиническом течении и прогнозе исходов атеросклероза и ишемической болезни сердца

Главни садржај чланка

V. V. Bratus
V. O. Shumakov
T. V. Talaieva

Анотація

В работе проведен анализ результатов современных клинических и фундаментальных исследований по проблеме диагностики доклинического атеросклероза, прогнозированию его течения и раннему определению риска развития конечных кардиальных точек. Результаты анализа позволяют сделать заключение, что в значительной части популяции среднего возраста существует бессимптомная доклиническая форма атероск­ле­ротического сосудистого поражения в отсутствие традиционных факторов сердечно-сосудистого риска. Показано, что кальцификация сосудистой стенки относится к числу важнейших наиболее распространенных патогенетических механизмов атеросклероза, наиболее ранних и достоверных его признаков. Помимо этого, атеросклероз является генерализованным процессом, и поэтому одновременная визуализация сосудов в ряде областей позволяет значительно повысить точность его диагностики и определения прогноза, особенно в сочетании с учетом наличия и выраженности сосудистой кальцификации. Установленные в настоящее время механизмы кальцификации могут являться мишенью для фармакологических воздействий, что позволит в ближайшее время оказать существенное влияние на характер прогрессирования атеросклероза и угрозу развития его тяжелых клинических проявлений.

Ключові слова

атеросклероз, ишемическая болезнь сердца, кальцификация, патогенез, субклинические формы

Детаљи чланка

Посилання

Посилання

Abifadel M., Rabès J.P., Boileau C., Varret M. After the LDL receptor and apolipoprotein B, autosomal dominant hypercholesterolemia reveals its third protagonist: PCSK9 // Ann. Endocrinol.– 2007.– Vol. 68.– P. 138–146.

Adler N., Singh-Manoux A., Schwartz J. et al. Social status and health: A comparison of British civil servants in Whitehall-II with European- and African-Americans in CARDIA // Social Science Medicine.– 2008.– Vol. 66.– P. 1034–1045.

Aika­wa E., Nahrendorf M., Figueiredo J.L. et al. Osteogenesis associates with inflammation in early-stage atherosclerosis

evaluated by molecular imaging in vivo // Circulation.– 2007.– Vol. 16.– P. 2841–2850.

Alexopoulos N., Raggi P. Calcification in atherosclerosis // Nature Rev.– 2009.– Vol. 6.– P. 681–688.

Arad Y., Goodman K.J., Roth M. et al. Coronary calcification, coronary disease risk factors, C-reactive protein, and atherosclerotic cardiovascular disease events: the St. Francis Heart Study // JACC.– 2005.– Vol. 46.– P. 158–165.

Baber U., Mehran R., Sartori S. et al. Pre­valence, impact and predictive value of detecting subclinical coronary and carotid atherosclerosis in asymptomatic adults: the BioImage Study // JAСC.– 2015.– Vol. 65.– P. 1065–1074.

Belcaro G., Nicolaides A.N., Ramaswami G. et al. Carotid and femoral ultrasound morphology screening and cardiovascular events in low risk subjects: a 10-year follow-up study (the CAFES-CAVE study(1) // Atherosclerosis.– 2001.– Vol. 156.– P. 379–387.

Bennett BJ, Scatena M, Kirk EA et al. Osteoprotegerin inactivation accelerates advanced atherosclerotic lesion progression and calcification in older ApoE/mice // ATVB.– 2006.– Vol. 26.– P. 2117–2124.

Bowman M.A.H, Gawdzik J., Bukhari U. et al. S100A12 in Vascular Smooth Muscle Accelerates Vascular Calcification in Apolipoprotein E–Null Mice by Activating an Osteogenic Gene Regulatory Program // ATBV.– 2011.– Vol. 31.– P. 337–344.

Сalcagno C., Mulder W.J.M., Nahrendorf M., Fayad Z.A. Systems Biology and Noninvasive Imaging of Atherosclerosis // NMR BIOMED.– 2015.– Vol. 28.– P. 1304–1314.

Chen Z., Croce K., Sakuma M. Platelet expression profiling and clinical validation of myeloid-related protein-14 as a novel determinant of cardiovascular events // Circulation.– 2006.– Vol. 113.– P. 2278–2284.

Cohen M.M. The new bone biology: pathologic, molecular, and clinical correlates // Am. J. Med. Genet.– 2006.– Vol. 140.– P. 2646–2706.

Сostet P., Carriou B., Lambert G. et al. Hepatic expression PCSK9 is regulated by nutritional status via insulin and sterol regulatory element-binding protein 1c // J. Biol. Chem.– 2008.– Vol. 281.– P. 6211–6218.

Derwall M., Malhotra R., Lai C.S. еt al. Inhibition of Bone Morphogenetic Protein Signaling Reduces Vascular Calcification and Atherosclerosis // ATVB.– 2012.– Vol. 32.– P. 613–622.

Ding H.T., Wang C.G., Zhang T.L., Wang K. Fibronectin enhances in vitro vascular calcification by promoting osteoblastic differentiation of vascular smooth muscle cells via ERK pathway // J. Cell. Biochem.– 2006.– Vol. 99.– P. 1343–1352.

Döring Y., Noels H., Weber C. The Use of High-Throughput Technologies to Investigate Vascular Inflammation and Atherosclerosis // ATVB.– 2001.– Vol. 32.– P. 182–195.

Erbel R., Lehmann N., Möhlenkamp S. et al. Subclinical coronary atherosclerosis predicts cardiovascular risk in different stages of hypertension. Result of the Heinz Nixdorf Recall Study // Hypertens.– 2012.– Vol. 59.– P. 44–53.

Fantus D., Awan Z., Seidah N.G., Genest J. Aortic calcification: Novel insights from familial hypercholesterolemia and potential role for the low-density lipoprotein receptor // Atherosclerosis.– 2013.– Vol. 226.– P. 9–15.

Fernández-Friera L., Peñalvo J.L., Fernández-Ortiz A. et al. Prevalence, Vascular Distribution, and Multiterritorial Extent of Subclinical Atherosclerosis in a Middle-Aged Cohort. The PESA (Progression of Early Subclinical Atherosclerosis) Study // Circulation.– 2015.– Vol. 131.– P. 2104–2113.

Fujinoa T.H., Asabab M.J., Kang Y. et al. Low-density lipoprotein receptor-related protein 5 (LRP5) is essential for normal cholesterol metabolism and glucose-induced insulin secretion // PNAS.– 2003.– Vol. 100.– Р. 229–234.

Gibson A.O., Blaha M.J., Arnan M.K. et al. Coronary artery calcium and incident cerebrovascular events in an asymptomatic cohort: the MESA study // JACC: Cardiovasc. Imaging.– 2014.– Vol. 7.– P. 1108–1115.

Grossman C., Shemesh J., Dovrish Z. et al. Coronary Artery Calcification Is Associated With the Development of Hyperten­­­sion // Am. J. Hypertens.– 2013.– Vol. 26.– P. 13–19.

Hamirani Y.S., Pandey S., Rivera J.J. et al. Markers of inflammation and coronary artery calcification: A systematic review // Atherosclerosis.– 2008.– Vol. 17.– Р. 1–7.

Hecht H.S. Coronary Artery Calcium Scanning. Past, Pre­­­sent, and Future // JACC: Cardiovascular. Imaging.– 2015.– Vol. 8.– P. 579–596.

Iwakiri T., Yano Y., Sato Y. et al. Usefulness of carotid intima-media thickness measurement as an indicator of generalized atherosclerosis: Findings from autopsy analysis // Athero­­­sclerosis.– 2012.– Vol. 225.– P. 359–362.

Johnson R.C., Leopold J.A., Loscalzo J. Vascular calcification: pathobiological mechanisms and clinical implications // Circ. Res.– 2006.– Vol. 99.– P. 1044–1059.

Lambert G. Unravelling the functional significance of PCSK9 // Curr. Opin. Lipidol.– 2007.– Vol. 8.– P. 304–309.

Lewis J.R., Schousboe J.T., Lim W.H. et al. Abdominal Aortic Calcification Identified on Lateral Spine Images From Bone Densitometers Are a Marker of Generalized Atherosclerosis in Elderly Women // ATVB.– 2016.– Vol. 36.– P. 166–173.

Mahabadi A.A., Möhlenkamp S., Moebus S. et al.; Heinz Nixdorf Investigator Group. The Heinz Nixdorf Recall study and its potential impact on the adoption of atherosclerosis imaging in European primary prevention guidelines // Curr. Athe­ro­scler. Rep.– 2011.– Vol. 13.– P. 367–372.

Martin S.S., Blaha M.J., Blankstein R. et al. Dyslipidemia, coronary artery calcium, and incident atherosclerotic cardiovascular disease: implications for statin therapy from the Multi-Ethnic Study of Atherosclerosis // Circulation.– 2014.– Vol. 129.– P. 77–86.

Mayr M., Zampetaki A., Wilen P. et al. MicroRNAs within the continuum of postgeno­mics biomarkers discovery // ATVB.– 2013.– Vol. 33.– P. 206–214.

Mori Y., Kosaki A., Kishimoto N. et al. Increased plasma S100A12 (EN-RAGE) levels in hemodialysis patients with atherosclerosis // Am. J. Nephrol.– 2009.– Vol. 29.– P. 18–24.

Muteliefu G., Enomoto A., Jiang P. et al. Indoxyl sulphate induces oxidative stress and the expression of osteoblast-spe­­cific proteins in vascular smooth muscle cells // Nephrol. Dial. Transplant.– 2009.– Vol. 24.– P. 2051–2058.

Nadra I., Mason J.C., Philippidis P. et al. Proinflammatory activation of macrophages by basic calcium phosphate crystals via protein kinase C and MAP kinase pathways: a vicious cycle of inflammation and arterial calcification? // Circ. Res.– 2005.– Vol. 96.– P. 1248–1256.

Naoumova R.P, Tosi I., Patel D. et al. Severe hyperchole­­­sterolemia in four British families with the D374Y mutation in the PCSK9 gene: long-term follow-up and treatment response // ATVB.– 2005.– Vol. 25.– P. 2654–2660.

Nonin S., Iwata S., Sugioka K. et al. Plaque Surface Ir­­­­regularity and Calcification Length Within Carotid Plaque Predict Secondary Events in Patients With Coronary Artery Disease // Circulation.– 2016.– Vol. 34.– Р. 12796.

Oesterle A., Bowman M.A.H. S100A12 and the S100/Calgranulins. Emerging Biomarkers for Atherosclerosis and Possib­­­­ly Therapeutic Targets // ATVB.– 2015.– Vol. 35.– P. 2496–2507.

Patel J., Rifai M.Al., Ayers C. et al. Inflammation and Coro­­­nary Artery Calcification in South Asians: The Mediators of Atherosclerosis in South Asians Living in America (MASALA) Study // Circulation.– 2016.– Vol. 134.– Р. 17316.

Pencina M.J., D’Agostino R.B., Larson M.G. et al. Predicting the 30-year risk of cardiovascular disease: the Framingham Heart Study // Circulation.– 2009.– Vol. 119.– P. 3078–3084.

Polonsky T.S., McClelland R.L., Jorgensen N.W. et al. Coro­­­nary artery calcium score and risk classification for coronary heart disease prediction // JAMA.– 2010.– Vol. 303.– Р. 1610–1616.

Quian Y.W., Schmidt R.J., Zbang Y. et al. Secreted PCSK9 downregulates low density lipoprotein receptor through receptor-mediated endocytosis // J. Lipid. Res.– 2007.– Vol. 48.– P. 1488–1498.

Rutter M.K., Massaro J.M., Hoffmann U. et al. Fasting glucose, obesity, and coronary artery calcification in community-based people without diabetes // Diabetes Care.– 2012.– Vol. 35.– P. 1944–1950.

Santos R.D., Rumberger J.A., Budoff M.J. et al. Thoracic aorta calcification detected by electron beam tomography predicts all-cause mortality // Atherosclerosis.–2010.– Vol. 209.– P. 131–135.

Scatena M., Liaw L., Giachelli C.M. Osteopontin. A Multi­­­functional Molecule Regulating Chronic Inflammation and Vascular Disease // ATVB.– 2007.– Vol. 27.– P. 2302–2309.

Shao J-S., Cheng S-L., Sadhu J., Towler D.A. Inflammation and the Osteogenic Regulation of Vascular Calcification. A Review and Perspective // Hypertens.– 2010.– Vol. 55.– P. 579–592.

Terekeci H.M., Senol M.G., Top C. et al. Plasma osteoprotegerin concentrations in type 2 diabetic patients and its association with neuropathy // Exp. Clin. Endo­cri­nol. Diabetes.– 2009.– Vol. 117.– P. 119–123.

Tintut Y., Morony S., Demer L.L. Hyperlipidemia promotes osteoclastic potential of bone marrow cells ex vivo// ATVB.– 2004.– Vol. 24.– Р. e6–е10.

Watanabe M., Hayashi F., Tokue M. et al. A Higher Levels of PCSK9 is Associated With Coronary Spotty Calcification in Patients With Acute Coronary Syndromes // Circulation.– 2016.– Vol. 34.– Р. 20427.

Yao Y., Bennett B.J., Wang X. et al. Inhibition of bone morphogenetic proteins protects against atherosclerosis and vascular calcification // Circ. Res.– 2010.– Vol. 107.– Р. 485–494.

Zavod­ni A.E., Wasserman B.A., McClelland R.L. et al. Carotid artery plaque morphology and composition in relation to incident cardiovascular events: the Multi-Ethnic Study of Atherosclerosis (MESA) // Radiology.– 2014.– Vol. 271.– P. 381–389.