COVID-19 pandemic and cardiovascular disease

Main Article Content

V. M. Kovalenko
E. G. Nesukay
T. M. Kornienko
N. S. Titova

Abstract

The World Health Organization announced on March 11, 2020 that coronavirus disease 2019 (COVID-19) is a global pandemic. The data of studies confirming that cardiovascular diseases are a common concomitant pathology among patients with COVID-19 and cardiological patients have a more severe course and high mortality are presented. The mechanism of interaction between COVID-19 and cardiovascular diseases has been identified. First, angiotensin-converting enzyme-2 (ACE2), a key enzyme in the renin-angiotensin-aldosterone system, is recognized as a functional receptor for SARS-CoV-2. Secondly, it was proved that SARS-CoV-2 through the cytokine mechanism causes direct damage to the myocardium and can disrupt the function of the cardiovascular system. This review highlights the need for continued use of ACE inhibitors and angiotensin receptor blockers in the treatment of patients with arterial hypertension, coronary heart disease and heart failure, as well as recommendations for urgent and emergency care for cardiac patients in the context of the COVID-19 pandemic.

Article Details

Keywords:

pandemic COVID-19, cardiovascular diseases, renin-angiotensin-aldosterone system

References

American Heart Association. HFSA/ACC/AHA statement addresses concerns re: using RAAS antagonists in COVID-19. Accessed March 20, 2020. professional.heart.org/professional/ScienceNews/UCM_505836_HFSAACCAHA-statement-addresses-concerns-re-using-RAAS-antagonists-in-COVID-19.jsp.

Andersen K.G., Rambaut A., Ian Lipkin W.I. et al. The proximal origin of SARS-CoV-2 // Nature Medicine.– 2020. doi: https://doi.org/10.1038/s41591-020-0820-9.

Author manuscript; available in PMC 2015 Mar 1 // Curr. Heart Fail. Rep.– 2014.– Vol. 11 (1).– P. 58–63. doi: https://doi.org/10.1007/s11897-013-0178-0.

Chamsi-Pasha M.A.R., Shao Z., Tang, W.H.W. Angiotensin-Converting Enzyme 2 as a Therapeutic Target for Heart Failure // Curr. Heart Fail. Rep.– 2014.– Vol. 11.– P. 58–63. https://doi.org/10.1007/s11897-013-0178-0.

Chen N., Zhou M., Dong X. et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study // The Lancet.– 2020.– Vol. 395.– P. 507–513.

Drosten C., Gunther S., Preiser W. et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome // New Engl. J. Med.– 2003.– Vol. 348.– P. 1967–1976.

European Society of Cardiology. Position statement of the ESC Council on Hypertension on ACE-inhibitors and angiotensin receptor blockers. Published March 13, 2020.

Ferrario C.M., Jessup J., Chappel M.C. et al. Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2 // Circulation.– 2005.– Vol. 24.– P. 2605–2610. https://doi.org/10.1161/CIRCULATIONAHA.104.510461.

Forster P., Forster L., Renfrew C. et al. Phylogenetic network analysis of SARS-CoV-2 genomes // Proceedings of the National Academy of Sciences.– 2020. https://doi.org/10.1073/pnas.2004999117.

Fuk-Woo Chan J., Yuan S., Kok K.-H. et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster // Lancet.– 2020.– Vol. 395.– P. 514–523. gisanddata.maps.arcgis.com https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6

He X.W., Lai J.S., Cheng J. et al. Impact of complicated myocardial injury on the clinical outcome of severe or critically ill COVID-19 patients // Chinese J. Cardiol.– 2020.– Vol. 48 (0).– Р. E011.

Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association Originally published 31 Jan 2019 // Circulation.– 2019.– Vol. 139.– P. e56–e528. https://doi.org/10.1161/CIR.0000000000000659.

HFSA/ACC/AHA statement addresses concerns re: using RAAS antagonists in COVID-19.– 2020. professional.heart.org/professional/ScienceNews/UCM_505836_HFSAACCAHA-statement-addresses-concerns-re-using-RAAS-antagonists-in-COVID-19.jsp.

Hoffmann M., KleineWeber H., Schroeder S. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor // Cell.– 2020. https://doi.org/10.1016/j.cell.2020.02.052.

Imai Y., Kuba K., Rao S. et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure // Nature.– 2005.– Vol. 436.– P. 112–116.

Jancovich J.K., Chinchar V.G., Hyatt A. et al. Virus taxonomy, classification and nomenclature of viruses: ninth report of the International Committee on Taxonomy of Viruses.– San Diego, CA: Academic Press.– 2012.– P. 193–210.

Jing Z.C., Zhu H.D., Yan X.W. et al. Recommendations From the Peking Union Medical College Hospital for the Management of Acute Myocardial Infarction During the COVID-19 Outbreak // Eur. Heart J.– 2020.– Vol. 0.– Р. 1–5.

Lai C.-C., Shih T.-P., Ko W.-C. et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges // International Journal of Antimicrobial Agents.– 2020.– Vol. 55.

Lakkireddy D.R., Chung M.K., Gopinathannair R. et al. Cita­­tion: Guidance for Cardiac Electrophysiology During the Coronavirus (COVID-19) Pandemic From the Heart Rhythm Society COVID-19 Task Force; Electrophysiology Section of the American College of Cardiology; and the Electro­­­cardiography and Arrhythmias Committee of the Council on Clinical Cardiology, American Heart Association. Guidance for Cardiac EP During the COVID-19 Pandemic // Heart Rhythm.– 2020. doi: https://doi.org/10.1016/j.hrthm.2020.03.028.

Li Q., Guan X., Wu P. et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia // New Engl. J. Med.– 2020.– Vol. 382 (13).– P. 1199–1207. doi: https://doi.org/10.1056/NEJMoa2001316.

Li W., Moore M.J., Vasilieva N. et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus // Nature.– 2003.– Vol. 426.– P. 450–454.

Liu Y., Yang Y., Zhang C. et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury // Sci. China Life Sci.– 2020.– Vol. 63.– P. 364–374. https://doi.org/10.1007/s11427-020-1643-8.

Madjid M., Safavi-Naeini P., Solomon S.D. et al. Potential Effects of Coronaviruses on the Cardiovascular System: A Review // JAMA Cardiol.– 2020. doi: https://doi.org/10.1001/jamacardio.2020.1286.

Patel A.B., Ashish V. COVID-19 and Angiotensin-Converting Enzyme Inhibitors and Angiotensin Receptor Blockers What Is the Evidence? // JAMA.– Published online March 24, 2020. doi: https://doi.org/10.1001/jama.2020.4812.

Peiris J.S., Guan Y., Yuen K.Y. Severe acute respiratory syndrome // Nat. Med.– 2004.– Vol. 10 (12).– P. S88–S97.

Peiris J.S.M., Lai S.T., Poon L.L.M. et al. Coronavirus as a possible cause of severe acute respiratory syndrome // Lancet.– 2003.– Vol. 361.– P. 1319–1325.

Peng Y.D., Meng K., Guan H.Q. Clinical characteristics and outcomes of 112 cardiovascular disease patients infected by 2019-nCoV // Chin. J. Cardiol.– 2020.– Vol. 48.– P. E004. doi: https://doi.org/10.3760/cma.j.cn112148-20200220-00105.

Preventing a COVID-19 pandemic // BMJ.– 2020.– Vol. 368.– P. 810. doi.org/10.1136/bmj.m810.

Qu X.X., Hao P., Song X.J. et al. Identification of two critical amino acid residues of the severe acute respiratory syndrome coronavirus spike protein for its variation in zoonotic tropism transition via a double substitution strategy // J. Biol.Chem.– 2005.– Vol. 280.– Р. 295889595. doi: https://doi.org/10.1074/jbc.M500662200.

Rota P.A., Oberste M.S., Monroe S.S. et al. Characterization of a novel coronavirus associated with severe acute respiratory syndrome // Science.– 2003.– Vol. 300.– P. 1394–1399.

Shah P.B., Welt F.G.P., Mahmud E. et al. Triage Considera­­tions for Patients Referred for Structural Heart Disease Intervention During the Coronavirus Disease 2019 (COVID-19) Pandemic: An ACC /SCAI Consensus Statement // JACC: Cardiovasc. Interventions.– 2020.

Wan Y., Shang J., Graham R. et al. Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus // ASM J. Virology.– 2020.– Vol. 94.– P. 27–20. doi: https://doi.org/10.1128/JVI.00127-20.

Wang D., Hu B., Hu C. et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China // JAMA.– 2020.– Vol. 323 (11).– P. 1061–1069. doi: https://doi.org/10.1001/jama.2020.1585.

WHO. Summary of probable SARS cases with onset of illness from 1 November 2002 to July 2003.

Wu F., Zhao S., Yu B. et al. A new coronavirus associated with human respiratory disease in China // Nature.– 2020.– Vol. 579.– P. 265–269. https://doi.org/10.1038/s41586-020-2008-3.

Xiong T.Y., Redwood S., Prendergast B., Chen M. Corona­­viruses and the cardiovascular system: acute and long-term implications // Eur. Heart J.– 2020.– Vol. 0.– Р. 1–3.

Xu X., Chen P., Wang J. et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission // Sci. China Life Sci.– 2020.– Vol. 63.– P. 457–460. doi: https://doi.org/10.1007/s11427-020-1637-5.

Yang X.H., Deng W., Tong Z. et al. Mice transgenic from human angiotensin-converting enzyme 2 provide a model for SARS coronavirus infection // Comput. Med.– Vol. 200757 (5).– P. 450–459.

Zaki A.M., van Boheemen S., Besterbroer T.M. et al. Isolation of a Novel Coronavirus from a Man with Pneumonia in Saudi Arabia // New Engl. J. Med.– 2012.– Vol. 367.– P. 1814–1820. doi: https://doi.org/10.1056/NEJMoa1211721.

Zheng Y., Ma Y., Zhang J. et al. COVID-19 and the cardiovascular system // Nat. Rev. Cardiol.– 2020. https://doi.org/10.1038/s41569-020-0360-5.

Zhou F., Yu T., Du R. et al. Clinical course and risk factors for mortality of adult in patients with COVID-19 in Wuhan, China: a retrospective cohort study // Lancet.– 2020.– Vol. 395 (10229).– Р. 1054–1062.

Most read articles by the same author(s)

1 2 > >>