Anthropometric parameters and body tissue compartments of patients with chronic heart failure and reduced left ventricular ejection fraction depending on weight loss within the previous 6 months

Main Article Content

L. G. Voronkov
К. V. Voitsekhovska
S. V. Fedkiv
V. I. Koval

Abstract

The aim – to compare the anthropometric parameters and body tissue compartments of patients with chronic heart failure (CHF) and reduced left ventricular ejection fraction depending on weight loss ≥ 6 % of total body weight within the previous 6 months.
Materials and methods. 77 stable patients with chronic heart failure 25–75 years old, NYHA class II–IV, with left ventricular ejection fraction ≤ 35 % were screened. The criterion for the patients group distribution was the weight loss in the last 6 months ≥ 6 % according to the European guidelines for the diagnosis and treatment of CHF. Body composition was measured by dual-energy X-ray absorptiometry. Patients were included in a clinical compensation phase.
Results and discussion. Weight loss ≥ 6 % within the previous 6 months was observed in 34 (44.2 %) patients. Patients with weight loss ≥ 6 % had a significantly smaller fat tissue mass (p=0.002) and lean tissues mass (p=0.039), which was confirmed by comparing the normalized indicators of these tissue arrays relative to growth. The limb muscle mass (p=0.006) and the limb muscle mass index (p=0.002) were significantly less in this group of patients. The number of lost kilograms over the past 6 months correlated inversely with the muscle mass index of limbs (r=–0.411, p=0.001), body weight (r=–0.381, p=0.001), muscle mass of limbs (r=–0.360, p=0.001), hip circumference (r=–0.352, p=0.002), body surface area (r=–0.345, p=0.009), waist circumference (r=–0.334, p=0.003), body mass index (r=–0.330, p=0.004), shoulder arm circumference (r=–0.280, p=0.015), lean tissue mass (r=–0.277, p=0.015), skin-fat fold thickness under the scapula (r=–0.273, p=0.018), fat mass tissue (r=–0.269, p=0.018), the circumference of tense arm (r=–0.262, p=0.023), the ratio of fat tissue to height (r=–0.253, p=0.026), the fat tissue index (r=–0.233, p=0.042), and correlated positively with the percentage of bone tissues (r=0.250, p=0.028).
Conclusions. Weight loss ≥ 6 % over the past 6 months in patients with CHF and reduced ventricular ejection fraction was observed in 34 (44.2 %) patients. Patients with CHF and weight loss ≥ 6 % were significantly older, had a higher NYHA class, lower body weight, body mass index, shoulder circumference of a tense and relaxed arm, waist and hip circumferences, thickness skin and fat folds over the biceps, triceps and under the scapula. Patients with a body weight loss of ≥ 6 % over the past 6 months had a significantly lower percentage of fat tissue, fat mass and lean tissue mass, indexes of fat mass and muscular tissue of limbs. Patients in groups did not differ in terms of mineral bone mass.

Article Details

Keywords:

chronic heart failure, body weight loss, anthropometric indices, densitometry, sarcopenia

References

Voronkov LG, Amosova KM, Dzyak GV, Zharіnov OY, Kovalenko VM, Korkushko OV, Nesukay OG, Sichov OS, Rudik YuS, Parkhomenko OM. Rekomendatsii Asotsiatsii kardiolohiv Ukrainy z diahnostyky ta likuvannia khronichnoi sertsevoi nedostatnosti. Ukrai'ns'kiy kardiologichniy zhurnal –

Ukrainian Journal of Cardiology 2010;3:11–59. (In Ukr).

Kovalenko VM, Ivaniv YuA. Rekomendatsii robochoi hrupy z funktsionalnoi diahnostyky asotsiatsii kardiolohiv Ukrainy i Vseukrainskoi asotsiatsii fakhivtsiv z ekhokardiohrafii – Recommendations of the Working Group on Functional Diagnostics of the Association of Cardiologists of Ukraine and the All-Ukrainian Association of Specialists in Echocardiography. К.2015. (In Ukr).

Shostak NA, Muradjanc AA, Kondrashov AA. Sarkopenija i perekrestnye sindromy – znachenie v klinicheskoj praktike. Klinicist – Сlinician 2016;10:11. (In Russ).

Anker S, Ponikowski P, Clark A, Leyva F, Rauchhaus M, Kemp M, Teixeira M, Hellewell P, Hooper J, Poole-Wilson P, Coats A. Cytokines and neurohormones relating to body composition alterations in the wasting syndrome of chronic heart failure. Eur Heart J 1999;20:683–693. http://doi.org/10.1053/euhj.1998.1446.

Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, Hotta K, Shimomura I, Nakamura T, Miyaoka K, Kuriyama H, Nishida M, Yamashita S, Okubo K, Matsubara K, Muraguchi M, Ohmoto Y, Funahashi T, Matsuzawa Y. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun 1999; 257(1):79–83.

Biolo G, Cederholm T, Muscaritoli M. Muscle contractile and metabolic dysfunction is a common feature of sarcopenia of aging and chronic diseases: from sarcopenic obesity to cachexia. Clin Nutr 2014;33(5):737–748. http://doi.org/10.1016/j.clnu.2014.03.007.

Birkenfeld A, Boschmann M, Moro C, Adams F, Heusser K, Franke G, Berlan M, Luft F, Lafontan M, Jordan J. Lipid mobilization with physiological atrial natriuretic peptide concentrations in humans. J Clin Endocrinol Metab 2005;90:3622–3628. http://doi.org/10.1210/jc.2004-1953.

Brink M, Price S, Chrast J, Bailey J, Anwar A, Mitch W, Delafontaine P. Angiotensin II induces skeletal muscle wasting through enhanced protein degradation and down-regulates autocrine insulin-like growth factor I. Endocrinology 2001;142(4):1489–96. http://doi.org/10.1210/endo.142.4.8082.

Deurenberg P, Weststrate J, Seidell J. Body mass index as a measure of body fatness: age- and sex-specific prediction formulas. Br J Nutr 1991; 65(2):105–114.

Dos Santos L, Cyrino E, Antunes M, Santos D, Sardinha L. Sarcopenia and physical independence in older adults: the independent and synergicrole of muscle mass and muscle func-tion. J Cachexia Sarcopenia Muscle 2017;8:245–250. http://doi.org/10.1002/jcsm.12160.

Fulster S, Tacke M, Sandek A, Ebner N, Tschope C, Doehner W, Anker S, von Haehling S. Muscle wasting in patients with chronic heart failure: results from the studies investigating comorbidities aggravating heart failure (SICA-HF). Eur Heart J 2013;34(7):512–519. http://doi.org/10.1093/eurheartj/ehs381.

Georgiadou P, Adamopoulos S. Skeletal muscle abnormalities in chronic heart failure. Curr Heart Fail Rep 2012;9(2):128–132. http://doi.org/10.1007/s11897-012-0090-z.

Jankowska E, Jakubaszko J, Cwynar A, Majda J, Ponikowska B, Kustrzycka-Kratochwil D, Reczuch K, Borodulin-Nadzieja L, Banasiak W, Poole-Wilson PA, Ponikowski P. Bone mineral status and bone loss over time in men with chronic systolic heart failure and their clinical and hormonal determinants. Eur J Heart Fail. 2009;11(1):28–38. http://doi.org/10.1093/eurjhf/hfn004.

Kato A. Muscle wasting is associated with reduced exercise capacity and advanced disease in patients with chronic heart failure. Future Cardiol. 2013;9(6):767–770. http://doi.org/10.2217/fca.13.74.

Konishi M, Ishida J, Springer J, von Haehling S, Akashi YJ, Shimokawa H, Anker S. Heart failure epidemiology and novel treatments in Japan: facts and numbers. ESC Heart Fail. 2016;3(3):145–151. http://doi.org/10.1002/ehf2.12103.

Lavie C, Milani R, Ventura H. Body Composition and Heart Failure Prevalence and Prognosis: Getting to the Fat of the Matter in the “Obesity Paradox”. Mayo Clin Proc. 2010;85(7):605–608. http://doi.org/10.4065/mcp.2010.0333

Mancini D, Walter G, Reichek N, Lenkinski R, McCully K, Mullen J, Wilson J. Contribution of skeletal muscle atrophy to exercise intolerance and altered muscle metabolism in heart failure. Circulation 1992;85(4):1364–73.

Marty E, Liu Y, Samuel A, Or O, Lane J. A review of sarcopenia: Enhancing awareness of an increasingly prevalent disease. Bone 2017; 105:276–286. http://doi.org/10.1016/j.bone.2017.09.008.

Morley J, Anker S, von Haehling S. Prevalence, incidence, and clinical impact of sarcopenia: facts, numbers, and epidemiology-update 2014. J Cachexia Sarcopenia Muscle 2014;5(4):253–259. http://doi.org/10.1007/s13539-014-0161-y.

Mozaffarian D, Benjamin E, Go A, Arnett D, Blaha M, Cushman M, Das S, de Ferranti S, Despres J, Fullerton H, Howard V, Huffman M, Isasi C, Jimenez M, Judd S, Kissela B, Lichtman J, Lisabeth L, Liu S, Mackey R, Magid D, McGuire D, Mohler ER 3rd, Moy C, Muntner P, Mussolino M, Nasir K, Neumar R, Nichol G, Palaniappan L, Pandey D, Reeves M, Rodriguez C, Rosamond W, Sorlie P, Stein J, Tow fighi A, Turan T, Virani S, Woo D, Yeh R, Turner M. Executive Summary: Heart Disease and Stroke Statistics-2016 Update: A Report From the American Heart Association. Circulation 2016;133:447–454. http://doi.org/10.1161/CIR.0000000000000366.

Ponikowski P, Voors A, Anker S, Bueno H, Cleland J, Coats A, Falk V, González-Juanatey J, Harjola V, Jankowska E, Jessup M, Linde C, Nihoyannopoulos P, Parissis J, Pieske B, Riley J, Rosano G, Ruilope L, Ruschitzka F, Rutten F, van der Meer P; ESC Scientific Document Group. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Eur. Heart J 2016;37(27):2129–2200. http://doi.org/10.1093/eurheartj/ehw128.

Rossignol P, Masson S, Barlera S, Girerd N, Castelnovo A, Zannad F, Clemenza F, Tognoni G, Anand I, Cohn J, Anker SD, Tavazzi L, Latini R. Loss in body weight is an independent prognostic factor for mortality inchronic heart failure: insights fromthe GISSI-HF and Val-HeFT trials. EurJ Heart Fail 2015;17(4):424–433. http://doi.org/10.1002/ejhf.240

Sengenes C, Bouloumie A, Hauner H, Berlan M, Busse R, Lafontan M, Galitzky J. Involvement of a cGMP‐dependent pathway in the natriuretic peptide‐mediated hormone‐sensitive lipase phosphorylation in human adipocytes. J Biol Chem 2003;278:48617–48626. http://doi.org/10.1074/jbc.M303713200.

Shane E, Mancini D, Aaronson K, Silverberg SJ, Seibel MJ, Addesso V, McMahon DJ. Bone mass, vitamin D deficiency, and hyperparathyroidism in congestive heart failure. Am. J. Med. 1997;103(3):197–207.

Sullivan M, Green H, Cobb F. Skeletal muscle biochemistry and histology in ambulatory patients with longterm heart failure. Circulation 1990;81:518–527.

Szulc P, Feyt C, Chapurlat R. High risk of fall, poor physical function, and low grip strength in men with fracture-the STRAMBO study. J Cachexia Sarcopenia Muscle 2016;7:299–311. http://doi.org/10.1002/jcsm.12066.

Tabony A, Yoshida T, Galvez S, Higashi Y, Sukhanov S, Chandrasekar B, Mitch W, Delafontaine P. Angiotensin II upregulates protein phosphatase 2Cα and inhibits AMP-activated protein kinase signaling and energy balance leading to skeletal muscle wasting. Hypertension 2011;58(4):643–649. http://doi.org/10.1161/HYPERTENSIONAHA.111.174839.

Wei Y, Sowers J, Nistala R, Gong H, Uptergrove G, Clark S, Morris E, Szary N, Manrique C, Stump C. Angiotensin II-induced NADPH oxidase activation impairs insulin signaling in skeletal muscle cells. J Biol Chem. 2006;281(46):35137–46. http://doi.org/10.1074/jbc.M601320200

Xing W, Lv X, Gao W, Wang J, Yang Z, Wang S, Zhang J, Yan J. Bone mineral density in patients with chronic heart failure: a meta-analysis Clin Interv Aging. 2018;13:343–353. http://doi.org/10.2147/CIA.S154356

Yoshida T, Galvez S, Tiwari S, Rezk B, Semprun-Prieto L, Higashi Y, Sukhanov S, Yablonka-Reuveni Z, Delafontaine P. Angiotensin II inhibits satellite cell proliferation and prevents skeletal muscle regeneration. J Biol Chem. 2013;288(33):23823–32. http://doi.org/10.1074/jbc.M112.449074

Yoshida T, Semprun-Prieto L, Wainford R, Sukhanov S, Kapusta D, Delafontaine P. Angiotensin II reduces food intake by altering orexigenic neuropeptide expression in the mouse hypothalamus. Endocrinology 2012; 153(3):1411–20. http://doi.org/10.1210/en.2011-1764

Zamboni M, Rossi A, Corzato F, Bambace C, Mazzali G, Fantin F. Sarcopenia, cachexia and congestive heart failure in the elderly. Endocr Metab Immune Disord Drug Targets 2013;13(1):58–67.

Zhang L, Du J, Hu Z, Han G, Delafontaine P, Garcia G, Mitch WE. IL-6 and serum amyloid A synergy mediates angiotensin II-induced muscle wasting. J Am Soc Nephrol. 2009;20(3):604–12. http://doi.org/10.1681/ASN.2008060628