Diagnostic value of right heart and pulmonary artery catheterization in patients with suspected pulmonary hypertension. Part 2. Invasive study of parameters of hemodynamics and oxygen transport

Main Article Content

Yu. M. Sirenko
I. O. Zhyvylo
G. D. Radchenko
Yu. A. Botsiuk


The aim – evaluate the parameters of pulmonary and systemic hemodynamics obtained in patients with various forms of pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH) in Ukraine.
Materials and methods. The study included 195 patients: IPAH was in 68 patients; PAH associated with connective tissue diseases (CTD) – in 21 patients; PAH associated with HIV infection – in 4 patients; PAH associated with portal hypertension (PH) – in 4 patients; PAH associated with congenital heart disease – in 25 patients; CTEPH – in 51 patients, pulmonary hypertension (PH) associated with left heart disease (LHC) – in 5 patients and 17 patients who were excluded from the diagnosis of PH. From 2014 to 2019, these patients underwent 220 procedures of right heart catheterization (RHC) in accordance with current European Guidelines. Also, all patients underwent echocardiographic examination and determined the gas composition of blood and indicators of acid-base balance using the ABL 735 analyzer, calculated the parameters of the affinity of hemoglobin to oxygen (p50).
Results and discussion. The lowest level of arterial blood oxygen saturation was in the group of patients with PH due to LHD – 88.9 % (p<0.05); in other groups it averaged 94–97 %. The oxygen content in arterial blood was the lowest in the group of patients with PH due to LHD – 15.7 ml/L (p<0.05); in other groups this indicator was equal to 17.4–18.7 ml/L. The lowest oxygen saturation of mixed venous blood (SvO2) was in the PAH group associated with HIV – 58 % (p<0.05), and close to critical (< 65 %) SvO2 level was observed in the IPAH group – 66.3 %. CTEPH – 66.0 %. The highest level of this indicator was in the PAH group associated with portal hypertension – 81.1 %. The arterio-venous difference was highest in the PAH associated with HIV group – 5.6 ml/L, and the smallest in the PAH associated with PH group – 2 ml/L. On the other hand, the oxyhemoglobin dissociation curve was almost normal in all groups, except for the group of patients with PAH associated with portal hypertension.
Conclusions. The most severe disorders of hemodynamics and oxygen transport were observed in the group of PAH patients associated with HIV compared with other forms of PAH and CTEPH. The IPAH and CTEPH groups were similar in terms of hemodynamics, despite a different pathophysiological mechanism. In the group of patients with PAH associated with CTD, the results of the RHC were slightly better than in the group of patients with IPAH, reflecting that the hemodynamic component is not the leading one for prognosis in these patients. Also, the performance of the right ventricle was significantly higher in patients with PAH compared with the group without PH.

Article Details


pulmonary hypertension, right heart catheterization, cardiac hemodynamics, blood gases


Сіренко Ю.М., Живило І.О., Радченко Г.Д. Діагностичне значення катетеризації правих відділів серця та легеневої артерії у хворих із підозрою на легеневу гіпертензію. Частина 1. Методологія виконання процедури, нозологія захворювань та вазодилататорний тест // Укр. кардіол. журн.– 2019.– Том 26, № 6.– С. 64–76. doi: 10.31928/1608-635X-2019.6.6576.

Almodovar S., Cicalini S., Petrosillo N., Flores S.C. Pulmonary hypertension associated with HIV infection: pulmonary vascular disease: the global perspective // Chest.– 2010.– Vol. 137 (6).– P. 6S–12S. doi: 10.1378/chest.09-3065.

Chappell T.R., Rubin L.J., Markham R.V. Jr., Firth B.G. Independence of oxygen consumption and systemic oxygen transport in patients with either stable pulmonary hypertension or refractory left ventricular failure // Am. Rev. Respir. Dis.– 1983.– Vol. 128 (1).– Р. 30–33. doi: 10.1164/arrd.1983.128.1.30.

Debabrata Bandyopadhyay. et al. Pulmonary Hypertension in Patients With Connective Tissue Disease // EC Pulmonology and Respiratory Medicine.– 2017.– Vol. 4 (4).– P. 121–131.

Ekeloef N.P., Ekirsen J., Kancir C.B. Evaluation of two methods to calculate p50 from a single blood sample // Anaesthesiologica Scandinavica.– 2001.– Vol. 45 (5).– P. 550–552. doi: 10.1034/j.1399-6576.2001.045005550.x.

Frost A., Badesch D., Gibbs J.S.R. et al. Diagnosis of pulmonary hypertension // Eur. Respir. J.– 2019.– Vol. 53.– P. 1801904. doi: 10.1183/13993003.01904-2018.

Gaine S.P., Naeije R., Peacock A.J. The Right Heart.– London: Springer-Verlag.– 2014.– 323 p. doi: 10.1007/978-1-4471-2398-9.

Galie N., Humbert M., Vachiery J.L. et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT) // Eur. Respir. J.– 2015.– Vol. 46.– P. 903–975. doi: 10.1183/13993003.51032-2015.

Kanemaru E., Yoshitani K., Kato S. et al. Comparison of Right Ventricular Function Between Patients With and Without Pulmonary Hypertension Owing to Left-Sided Heart Disease: Assessment Based on Right Ventricular Pressure-Volume Curves // J. Cardiothorac. Vascular Anesthesia.– 2020.– Vol. 34.– P. 143–150. doi: 10.1053/j.jvca.2019.05.025.

Klima U.P., Lee M.–Y., Guerrero J.L. et al. Determinants of maximal right ventricular function: Role of septal shift // J. Thor. Cardiovasc. Surgery.– 2002.– Vol. 123 (1).– P. 72–80. doi: 10.1067/mtc.2002.118683.

Lang R.M., Badano L.P., Mor-Avi V. et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging // J. Am. Soc. Echocardiogr.– 2015.– Vol. 28 (1).– P. 1–39. e14. doi: 10.1016/j.echo.2014.10.003.

Lobdell D.D. An invertible simple equation for computation of blood O2 dissociation relations // J. Appl. Physiol. Respir. Environ. Exerc. Physsiol.– 1981.– Vol. 50 (5).– P. 971–973. doi: 10.1152/jappl.1981.50.5.971.

Mathai S.C., Hassoun P.M. Pulmonary Arterial Hypertension in Connective Tissue Diseases // Heart Fail Clin.– 2012.– Vol. 8 (3).– P. 413–425. doi: 10.1016/j.hfc.2012.04.001.

Remillard C.V., Yuan J.X.–J. Characterization of Hemodyna­­­mics in Patients with Idiopathic and Thromboembolic Pulmonary Hypertension // Clinical Medicine: Circulatory, Respiratory and Pulmonary Medicine.– 2008.– Vol. 2.– Р. 59–68. doi: 10.4137/CCRPM.S696.

Siggaard-Andersen O., Siggaard-Andersen M. The Oxygen Status Algorithm. A computer program for calculation and displaying pH and blood gas data // Scand. J. Clin. Lab. Invest.– 1990.– Vol. 50 (203).– P. 29–45. doi: 10.3109/00365519009087489.

Singh S. Pulmonary hypertension in people living with HIV/AIDS // J. Indian College Cardiology.– 2019.– Vol. 9 (1).– P. 1–6. doi: 10.4103/JICC.JICC_6_19.

Sithamparanathan S., Nair A., Thirugnanasothy L. et al. National Pulmonary Hypertension Service Research Collaboration of the United Kingdom and Ireland. Survival in porto pulmonary hypertension: Outcomes of the United Kingdom National Pulmonary Arterial Hypertension Registry // J. Heart Lung Transplant.– 2017.– Vol. 36 (7).– P. 770–779. doi: 10.1016/j.healun.2016.12.014.

Tenney S.M., Mithoefer J.C. The relationship of mixed venous oxygenation to oxygen transport: with special reference to adaptations to high altitude and pulmonary diseases // Am. Rev. Respir. Dis.– 1982.– Vol. 125 (4).– Р. 474–447. doi: 10.1164/arrd.1982.125.4.474.

Yang W., Marsden A.L., Ogawa M.T. et al. Right Ventricular Stroke Work Correlates With Outcomes in Pediatric Pulmonary Arterial Hypertension Patients // Circulation.– 2016.– Vol. 134 (1).– Abstract 20168.

Most read articles by the same author(s)

1 2 3 > >>