Biomarkers NT-PROBNP and ST2 in risk stratification of patients with acute myocardial infarction and obesity

Main Article Content

O. Ye. Labinska
O. Yu. Barnett
M. P. Halkevych
Yu. H. Kyyak

Abstract

The aim – to find out the diagnostic value of NT-proBNP and ST2 and to determine their correlations with the development of cardiovascular (CV) complications in patients with ST-elevation myocardial infarction (STEMI) and obesity.
Materials and methods. All patients were divided into 3 groups depending on body weight: group I included 52 patients with normal body weight (mean age – 60.83±11.94 years); group II – 51 patients with excess body weight (mean age – 62.04±8.55 years); group III – 55 patients with obesity I–III degree (mean age 60.96±11.31 years). 60 patients were selected in whose serum NT-proBNP and ST2 concentration were additionally determined twice, on admission and on the 10th day of treatment, using the test systems by Biomedica and Presage ST2 assay.
Results and discussion. Patients were divided into 2 subgroups depending on the course of the disease: group A – 22 patients with STEMI complicated with acute HF with Killip class III–IV, acute left ventricular aneurysm, rhythm and conductivity disturbances; group B – 38 patients with STEMI without CV complications. At admission to the hospital mean levels of NT-proBNP were higher in patients with CV complications (612.8 [489.5; 860.4] pg/ml – group I) when compared to non CV complications patients (598.6 [326.6; 913.1] pg/ml – group II, p>0.05). On the 10th day of the hospitalization serum levels of NT-proBNP decreased in both groups of patients (p<0.01), regardless of the course of acute myocardial infarction: on 44.52 % – in group A and 68.24 % – in group B. However, it should be noted that the values of NT-proBNP in group A on the 10th day of observation significantly exceeded the corresponding indicators in group B (p<0,05). At admission to the hospital mean ST2 values were significantly higher in patients with diagnosed CV complications (61.1 [44.8; 133.6] ng/ml – A) compared with patients without complications (40.8 [33.1; 64.3] ng/ml – B, p<0.05). When re-determining the ST2 biomarker in both groups of patients there was a significant (p<0.001) decrease: to 23.7 [18.8; 28.3] ng/ml (A) and 24 [19.7; 28.7] ng/ml (B), respectively, without a significant difference between the groups.
Conclusions. The biomarker ST2 can be considered as a predictor of cardiovascular complications in patients with STЕMI in the early postinfarction period. NT-proBNP values ​​in patients with complications in the early postinfarction period remain significantly higher on the 10th day of observation compared with those in patients without complications. The presence of obesity worsens the course of STЕMI: in such patients the values ​​of biomarkers NT-proBNP and ST2 are higher and complications are significantly more common in the early post-infarction period.

Article Details

Keywords:

acute myocardial infarction, obesity, heart failure, NT-proBNP, ST2

References

Алієва А.М., Резник Є.В., Гасанова Е.Т., Жбанів І.В., Нікітін І.Г. Клінічне значення визначення біомаркерів крові у хворих з хронічною серцевою недостатністю. Архів внутрішньої медицини. 2018;8(5):333–45.

Павлов С.В, Бурлака К.А. Сучасні молекулярно-генетичні маркери в діагностиці та скринінгу ефективності проведеної терапії захворювань серцево-судинної системи. Вісник проблем біології і медицини. 2018;2(144):49–55.

Barnett O, Polyetayeva K, Halkevych M, et al. Novel marker of myocardial remodeling ST2 and the influence of aldosterone antagonist in patients with heart failure caused by hypertension and ischemic heart disease. J Hypertension. 2018;36:e163. doi: https://doi.org/10.1097/01.hjh.0000539442.96104.62.

Berezin A, Berezin A. Soluble Suppression of Tumorigenicity 2: A Role in Biomarker-Guided Therapy of Heart Failure. J Cardiol Therapy. 2019;6(1):789–792. http://www.ghrnet.org/index.php/jct/article/view/2605/2942

Broch K, Ueland T, Nymo SH, et al. Soluble ST2 is associated with adverse outcome in patients with heart failure of ischaemic aetiology. Eur J Heart Fail. 2012;14(3):268–677. https://onlinelibrary.wiley.com/doi/abs/10.1093/eurjhf/hfs006

Daniels L, Maisel A. Natriuretic peptides. JACC. 2007;50(25):2357–68. doi: https://doi.org/10.1016/j.jacc.2007.09.021.

Doust J, Pietrzak E, Dobson A, et al. How well does B-type natriuretic peptide predict death and cardiac events in patients with heart failure: systematic review. BMJ. 2005;330(7492):625. doi: https://doi.org/10.1136/bmj.330.7492.625.

Eggers K, Armstrong P, Califf R et al. ST2 and mortality in non-ST-segment elevation acute coronary syndrome. Am Heart J. 2010;159(5):788–94. doi: https://doi.org/10.1016/j.ahj.2010.02.022.

Felker G, Fiuzat M, Thompson V, et al. Soluble ST2 in ambulatory patients with heart failure: association with functional capacity and long-term outcomes. Circ Heart Fail. 2013;6(6):1172–9. doi: https://doi.org/10.1161/CIRCHEARTFAILURE.113.000207.

Gaggin H, Motiwala S, Bhardwaj A, et al. Soluble concentrations of the interleukin receptor family member ST2 and β-blocker therapy in chronic heart failure. Circ Heart Fail. 2013;6(6):1206–1213. doi: https://doi.org/10.1161/CIRCHEARTFAILURE.113.000457.

González-Del-Hoyo M, Cediel G, Carrasquer A, et al. Prognostic implications of troponin I elevation in emergency department patients with tachyarrhythmia. Clin Cardiol. 2019;42(5):546–52. doi: https://doi.org/10.1002/clc.23175.

Gu L, Li J. Short-term and long-term prognostic value of circulating soluble suppression of tumorigenicity-2 concentration in acute coronary syndrome: a meta-analysis. Biosci Rep. 2019;39(6):BSR20182441. doi: https://doi.org/10.1042/BSR20182441.

Hall C. Essential biochemistry and physiology of (NT-pro)BNP. Eur J Heart Fail. 2004;6(3):257–60. doi: https://doi.org/10.1016/j.ejheart.2003.12.015.

Iantorno M, Shlofmitz E, Rogers T, et al. Should non-ST-elevation myocardial infarction be treated like ST-elevation myocardial infarction with shorter door-to-balloon time? Am J Cardiol. 2020;125(2):165–8. doi: https://doi.org/10.1016/j.amjcard.2019.10.012.

Kercheva M, Ryabova T, Gusakova A, et al. Serum soluble ST2 and adverse left ventricular remodeling in patients with ST-segment elevation myocardial infarction. Clin Med Insights Cardiol. 2019;13:1179546819842804. doi: https://doi.org/10.1177/1179546819842804.

Kozinski M, Krintus M, Kubica J, et al. High-sensitivity cardiac troponin assays: From improved analytical performance to enhanced risk stratification. Crit Rev Clin Lab Sci. 2017;54(3):143–72. doi: https://doi.org/10.1080/10408363.2017.1285268.

Liu HH, Cao YX, Jin JL, et al. Prognostic value of NT-proBNP in patients with chronic coronary syndrome and normal left ventricular systolic function according to glucose status: a prospective cohort study. Cardiovasc Diabetol. 2021;20(1):84. doi: https://doi.org/10.1186/s12933-021-01271-0.

Luchner A, Hengstenberg C, Lowel H, et al. N-terminal pro-brain natriuretic peptide after myocardial infarction: a marker of cardio-renal function. Hypertension. 2002;39:99–104. doi: https://doi.org/10.1161/hy0102.100537.

Lupón J, Gaggin H, de Antonio M, et al. Biomarker-assist score for reverse remodeling prediction in heart failure: The ST2-R2 score. Int J Cardiol. 2015;184:337–43. doi: https://doi.org/10.1016/j.ijcard.2015.02.019.

Marino R, Magrini L, Orsini F, et al. Comparison between soluble ST2 and high-sensitivity troponin I in predicting short-term mortality for patients presenting to the emergency department with chest pain. Ann Lab Med. 2017;37(2):137–46. doi: https://doi.org/10.3343/alm.2017.37.2.137.

Morita E, Yasue H, Yoshimura M, et al. Increased plasma levels of brain natriuretic peptide in patients with acute myocardial infarction. Circulation. 1993;88(1):82-91. doi: https://doi.org/10.1161/01.cir.88.1.82.

Patil R, Natarajan K. Serum levels of the ST2 (IL-1 receptor family) to predict mortality and clinical outcome in acute myocardial infarction. Indian Heart J. 2015;67(1):36. https://www.sciencedirect.com/science/article/pii/S0019483215005325?via%3Dihub

Puymirat E, Simon T, Cayla G, et al.; USIK, USIC 2000, and FAST-MI investigators. Acute myocardial infarction: changes in patient characteristics, management, and 6-month outcomes over a period of 20 years in the FAST-MI program (French Registry of Acute ST-Elevation or Non-ST-Elevation Myocardial Infarction) 1995 to 2015. Circulation. 2017;136(20):1908–19. doi: https://doi.org/10.1161/CIRCULATIONAHA.117.030798.

Rehman S, Martinez-Rumayor A, Mueller T, et al. Indepen­­dent and incremental prognostic value of multimarker testing in acute dyspnea: results from the ProBNP Investigation of Dyspnea in the Emergency Department (PRIDE) study. Clin Chim Acta. 2008;392(1–2):41–5. doi: https://doi.org/10.1016/j.cca.2008.03.002.

Richards A, Di Somma S, Mueller T. ST2 in stable and unstable ischemic heart diseases. Am J Cardiol. 2015;115 (Suppl. 7):48B–58B. doi: https://doi.org/10.1016/j.amjcard.2015.01.041.

Sahinarslan А, Cengel А, Okyay К, et al. B-type natriuretic peptide and extent of lesion on coronary angiography in stable coronary artery disease. Cor Art Dis. 2005;16:225–9. doi: https://doi.org/10.1097/00019501-200506000-00003.

Savic-Radojevic A, Pljesa-Ercegovac M, Matic M, et al. Novel Biomarkers of Heart Failure. Advances Clinical Chemistry. 2017;79:93–152. doi: https://doi.org/10.1016/bs.acc.2016.09.002.

Schmitz J, Owyang A, Oldham E, et al. IL-33, an interleukin-1-like cytokyne that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokynes. Immunity. 2005;23(5):479–90. https://www.cell.com/immunity/fulltext/S1074-7613(05)00311-0?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1074761305003110%3Fshowall%3Dtrue

Sharim J, Daniels L. Soluble ST2 and Soluble Markers of Fibrosis: Emerging Roles for Prognosis and Guiding Therapy. Curr Cardiol Rep. 2020;22(6):41. doi: https://doi.org/10.1007/s11886-020-01288-z.

Tang B, Xiao Sh. Relationship between obesity and NT-proBNP and the effect on prognosis of acute myocardial infarction. Revista Argentina de Clínica Psicológica. 2020;XXIX(3):517–21. doi: https://doi.org/10.24205/03276716.2020.751.

Tsutamoto T, Wada A, Maeda K, et al. Plasma brain natriuretic peptide level as a biochemical marker of morbidity and mortality in patients with asymptomatic or minimally symptomatic left ventricular dysfunction. Comparison with plasma angiotensin II and endothelin-1. Eur Heart J. 1999;20(24):1799–807. doi: https://doi.org/10.1053/euhj.1999.1746.

Valensi P, Meune C. Congestive heart failure caused by silent ischemia and silent myocardial infarction: Diagnostic challenge in type 2 diabetes. Herz. 2019;44(3):210–7. doi: https://doi.org/10.1007/s00059-019-4798-3.

Villacorta H, Maisel A. Soluble ST2 testing: A promising biomarker in the management of heart failure. Arq Bras Cardiol. 2016;106(2):145–52. doi: https://doi.org/10.5935/abc.20150151.

Wang X, Zhang F, Zhang C, Zheng L, Yang J. The biomarkers for acute myocardial infarction and heart failure. Biomed Res Int. 2020;2020:2018035. doi: https://doi.org/10.1155/2020/2018035.

Wang Y, Wang J, Wang X, et al. Role of ST 2, Il-33 and BNP in predicting major adverse cardiovascular events in acute myocardial infarction after percutaneous coronary intervention. J Cell Mol Med. 2017;21:2677–84. doi: https://doi.org/10.1111/jcmm.13183.

Weber M, Hamm C. Role of B-type natriuretic peptide (BNP) and Nt-proBNP in clinical routine. Heart. 2006; 92:843–849. doi: https://doi.org/10.1136/hrt.2005.071233.

York M, Gupta D, Reynolds C, et al. B-Type natriuretic peptide levels and mortality in patients with and without heart failure. J Am Coll Cardiol. 2018;71(19):2079–88. doi: https://doi.org/10.1016/j.jacc.2018.02.071.

Zagidullin N, Motloch L, Gareeva D, et al. Combining novel biomarkers for risk stratification of two-year cardiovascular mortality in patients with ST-elevation myocardial infarction. J Clin Med. 2020;9(2):550. doi: https://doi.org/10.3390/jcm9020550.