Immunopathological aspects of etiopathogenesis of myocarditis

Main Article Content

F. V. Hladkykh

Abstract

Myocarditis is a group of inflammatory diseases of the heart muscle against the background of the absence of acute or chronic ischemic heart disease, which are diagnosed according to established histological, immunological and immunohistochemical criteria.
Objective. Summarize current information on the immunopathogenesis of myocarditis based on data from open sources of information.
Methods. Publications were selected based on PubMed, Clinical Key Elsevier, Cochrane Library, eBook Business Collection and Google Scholar databases, which covered information on the immunopathogenesis of myocarditis.
Results. Viral infections are the most common cause of myocarditis, along with some bacteria and protozoa. Chronic immune stimulation or autoimmunity in chronic viral myocarditis results from incomplete resolution of the viral infection or response to a previous virus or immune-mediated chronic tissue injury. An active autoimmune response in human myocarditis, both at the cellular and humoral levels, is the immunological basis for the development of this pathology. Myocarditis caused by COVID-19 is a new entity. At the moment, four main manifestations of myocarditis in the context of SARS-CoV-2 have been identified: myocarditis associated with an acute infection of COVID-19, post-acute syndrome of COVID-19 (or prolonged syndrome of COVID-19), multisystem inflammatory syndrome, and myocarditis due to related to vaccination. Autoimmune reactions probably contribute to molecular mimicry – they activate virus-specific T-cells that attack the myocardium. During this phase, high concentrations of cytokines (eg, tumor necrosis factor, interleukins 1a, 1b, 2, and interferon-γ) are produced. These cytokines, together with antibodies against viral and cardiac proteins, further exacerbate cardiac damage and systolic dysfunction due to contractile dysfunction and matrix proteins.
Conclusions. CD4+T-cells are defined as the main driving forces of heart-specific autoimmunity in myocarditis. Dysregulated CD4+ T-cell populations and their associated cytokines are critical for the development and progression of myocarditis and may serve as therapeutic targets and the development of new treatment approaches.

Article Details

Keywords:

myocardium, autoimmune myocarditis, T cells, interleukins, CD4+, cytokines

References

Amoah BP, Yang H, Zhang P, Su Z, Xu H. Immunopathogenesis of Myocarditis: The Interplay Between Cardiac Fibroblast Cells, Dendritic Cells, Macrophages and CD4+ T Cells. Scand J Immunol. 2015;82(1):1-9. https://doi.org/10.1111/sji.12298

Baral N, Adhikari P, Adhikari G, Karki S. Influenza Myocarditis: A Literature Review. Cureus. 2020 Dec 10;12(12):e12007. doi: https://doi.org/10.7759/cureus.12007

Bautista JL, Lio CW, Lathrop SK, Forbush K, Liang Y, Luo J, Rudensky AY, Hsieh CS. Intraclonal competition limits the fate determination of regulatory T cells in the thymus. Nat Immunol. 2009;10(6):610-7. https://doi.org/10.1038/ni.1739

Błyszczuk P. Myocarditis in Humans and in Experimental Animal Models. Front Cardiovasc Med. 2019;6:64. https://doi.org/10.3389/fcvm.2019.00064

Bracamonte-Baran W, Čiháková D. Cardiac Autoimmunity: Myocarditis. Adv Exp Med Biol. 2017;1003:187-221. https://doi.org/10.1007/978-3-319-57613-8_10

Bruestle K, Hackner K, Kreye G, Heidecker B. Autoimmunity in Acute Myocarditis: How Immunopathogenesis Steers New Directions for Diagnosis and Treatment. Curr Cardiol Rep. 2020;22(5):28. https://doi.org/10.1007/s11886-020-01278-1

Brüstle K, Heidecker B. Checkpoint inhibitor induced cardiotoxicity: managing the drawbacks of our newest agents against cancer. Oncotarget. 2017;8(63):106165-106166. https://doi.org/10.18632/oncotarget.22579

Caforio AL, Mahon NJ, Tona F, McKenna WJ. Circulating cardiac autoantibodies in dilated cardiomyopathy and myocarditis: pathogenetic and clinical significance. Eur J Heart Fail. 2002;4(4):411-7. https://doi.org/10.1016/s1388-9842(02)00010-7

Caforio AL, Pankuweit S, Arbustini E, Basso C, Gimeno-Blanes J, Felix SB, Fu M, Heliö T, et al.; European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J. 2013;34(33):2636-48, 2648a-2648d. https://doi.org/10.1093/eurheartj/eht210

Chen X, Zeng XH, Wang M, Chen L, Zhang N, Rao M, Yang PC, Song J. Bcl2-Like Protein 12 Is Required for the Aberrant T Helper-2 Polarization in the Heart by Enhancing Interleukin-4 Expression and Compromising Apoptotic Machinery in CD4+ T Cells. Circulation. 2018;138(22):2559-2568. https://doi.org/10.1161/CIRCULATIONAHA.118.033890.

Cooper LT Jr. Myocarditis. N Engl J Med. 2009;360(15):1526-38. https://doi.org/10.1056/NEJMra0800028.

Ekström K, Lehtonen J, Kandolin R, Räisänen-Sokolowski A, Salmenkivi K, Kupari M. Long-term outcome and its predictors in giant cell myocarditis. Eur J Heart Fail. 2016;18(12):1452-8. https://doi.org/10.1002/ejhf.606.

Gagliani N, Huber S. Basic Aspects of T Helper Cell Differentiation. Methods Mol Biol. 2017;1514:19-30. https://doi.org/10.1007/978-1-4939-6548-9_2.

Gangaplara A, Massilamany C, Brown DM, Delhon G, Pattnaik AK, Chapman N, Rose N, Steffen D, Reddy J. Coxsackievirus B3 infection leads to the generation of cardiac myosin heavy chain-α-reactive CD4 T cells in A/J mice. Clin Immunol. 2012;144(3):237-49. https://doi.org/10.1016/j.clim.2012.07.003.

Ganguly D, Haak S, Sisirak V, Reizis B. The role of dendritic cells in autoimmunity. Nat Rev Immunol. 2013;13(8):566-77. https://doi.org/10.1038/nri3477.

Grabie N, Lichtman AH, Padera R. T cell checkpoint regulators in the heart. Cardiovasc Res. 2019;115(5):869-77. https://doi.org/10.1093/cvr/cvz025.

Heidecker B, Ruedi G, Baltensperger N, Gresser E, Kottwitz J, Berg J, Manka R, Landmesser U, Lüscher TF, Patriki D. Systematic use of cardiac magnetic resonance imaging in MINOCA led to a five-fold increase in the detection rate of myocarditis: a retrospective study. Swiss Med Wkly. 2019;149:w20098. https://doi.org/10.4414/smw.2019.20098

Hennessy EJ, Moore KJ. Using microRNA as an alternative treatment for hyperlipidemia and cardiovascular disease: cardio-miRs in the pipeline. J Cardiovasc Pharmacol. 2013;62(3):247-54. https://doi.org/10.1097/FJC.0b013e31829d48bf.

Heymans S, Eriksson U, Lehtonen J, Cooper LT Jr. The Quest for New Approaches in Myocarditis and Inflammatory Cardiomyopathy. J Am Coll Cardiol. 2016;68(21):2348-2364. https://doi.org/10.1016/j.jacc.2016.09.937.

Hidron A, Vogenthaler N, Santos-Preciado JI, Rodriguez-Morales AJ, Franco-Paredes C, Rassi A Jr. Cardiac involvement with parasitic infections. Clin Microbiol Rev. 2010;23(2):324-49. https://doi.org/10.1128/CMR.00054-09.

Hofmann U, Frantz S. Role of lymphocytes in myocardial injury, healing, and remodeling after myocardial infarction. Circ Res. 2015;116(2):354-67. https://doi.org/10.1161/CIRCRESAHA.116.304072.

Hua X, Song J. Immune cell diversity contributes to the pathogenesis of myocarditis. Heart Fail Rev. 2019;24(6):1019-30. https://doi.org/10.1007/s10741-019-09799-w.

Ivanova EA, Orekhov AN. T Helper Lymphocyte Subsets and Plasticity in Autoimmunity and Cancer: An Overview. Biomed Res Int. 2015;2015:327470. https://doi.org/10.1155/2015/327470.

Kawai A, Nagatomo Y, Yukino-Iwashita M, Nakazawa R, Taruoka A, Yumita Y, Takefuji A, Yasuda R, et al. β1 adrenergic receptor autoantibodies and IgG subclasses: current status and unsolved issues. Journal of Cardiovascular Development and Disease. 2023;10(9):390. https://doi.org/10.3390/jcdd10090390.

Kostić T, Momčilović S, Perišić ZD, Apostolović SR, Cvetković J, Jovanović A, Barać A, Šalinger-Martinović S, Tasić-Otašević S. Manifestations of Lyme carditis. Int J Cardiol. 2017;232:24-32. https://doi.org/10.1016/j.ijcard.2016.12.169.

Kounis NG, Koniari I, Mplani V, Plotas P, Velissaris D. Hypersensitivity Myocarditis and the Pathogenetic Conundrum of COVID-19 Vaccine-Related Myocarditis. Cardiology. 2022;147(4):413-5. https://doi.org/10.1159/000524224 .

Kovalenko VM, Nesukay EG, Cherniuk SV, Kozliuk AS, Kirichenko RM. Diagnosis and treatment of myocarditis. Ukrainian Journal of Cardiology. 2021; 28(3):67-88. https://doi.org/10.31928/1608-635X-2021.3.6788

Kovalenko VM, Nesukay EG, Cherniuk SV, Polenova NS, Kirichenko RM, Giresh JJ, Titov EY, Kozliuk AS. Contemporary insight on myocarditis pathogenesis. Ukrainian Journal of Cardiology. 2020;27(2):65-74. https://doi.org/10.31928/1608-635X-2020.2.6574.

Lovell JP, Čiháková D, Gilotra NA. COVID-19 and Myocarditis: Review of Clinical Presentations, Pathogenesis and Management. Heart Int. 2022;16(1):20-7. https://doi.org/10.17925/HI.2022.16.1.20.

Mahmood SS, Fradley MG, Cohen JV, Nohria A, Reynolds KL, Heinzerling LM, Sullivan RJ, Damrongwatanasuk R, et al. Myocarditis in Patients Treated With Immune Checkpoint Inhibitors. J Am Coll Cardiol. 2018 Apr 24;71(16):1755-1764. https://doi.org/10.1016/j.jacc.2018.02.037.

Mahrholdt H, Wagner A, Deluigi CC, Kispert E, Hager S, Meinhardt G, Vogelsberg H, Fritz P, Dippon J, Bock CT, Klingel K, Kandolf R, Sechtem U. Presentation, patterns of myocardial damage, and clinical course of viral myocarditis. Circulation. 2006;114(15):1581-90. https://doi.org/10.1161/CIRCULATIONAHA.105.606509.

Monda E, Palmiero G, Rubino M, Verrillo F, Amodio F, Di Fraia F, Pacileo R, Fimiani F, et al. Molecular Basis of Inflammation in the Pathogenesis of Cardiomyopathies. Int J Mol Sci. 2020;21(18):6462. https://doi.org/10.3390/ijms21186462.

Pankuweit S, Klingel K. Viral myocarditis: from experimental models to molecular diagnosis in patients. Heart Fail Rev. 2013;18(6):683-702. https://doi.org/10.1007/s10741-012-9357-4.

Patriki D, Gresser E, Manka R, Emmert MY, Lüscher TF, Heidecker B. Approximation of the Incidence of Myocarditis by Systematic Screening With Cardiac Magnetic Resonance Imaging. JACC Heart Fail. 2018;6(7):573-9. https://doi.org/10.1016/j.jchf.2018.03.002.

Richardson P, McKenna W, Bristow M, Maisch B, Mautner B, O’Connell J, Olsen E, Thiene G, et al. Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the Definition and Classification of cardiomyopathies. Circulation. 1996;93(5):841-2. https://doi.org/10.1161/01.cir.93.5.841

Sagar S, Liu PP, Cooper LT Jr. Myocarditis. Lancet. 2012;379(9817):738-47. https://doi.org/10.1016/S0140-6736(11)60648-X.

Schultheiss HP, Baumeier C, Aleshcheva G, Bock CT, Escher F. Viral Myocarditis-From Pathophysiology to Treatment. J Clin Med. 2021;10(22):5240. https://doi.org/10.3390/jcm10225240.

Sonderegger I, Iezzi G, Maier R, Schmitz N, Kurrer M, Kopf M. GM-CSF mediates autoimmunity by enhancing IL-6-dependent Th17 cell development and survival. J Exp Med. 2008;205(10):2281-94. https://doi.org/10.1084/jem.20071119.

Towbin JA, Lowe AM, Colan SD, Sleeper LA, Orav EJ, Clunie S, Messere J, Cox GF, Lurie PR, Hsu D, Canter C, Wilkinson JD, Lipshultz SE. Incidence, causes, and outcomes of dilated cardiomyopathy in children. JAMA. 2006;296(15):1867-76. https://doi.org/10.1001/jama.296.15.1867.

Van der Borght K, Scott CL, Nindl V, Bouché A, Martens L, Sichien D, Van Moorleghem J, Vanheerswynghels M, et al. Myocardial Infarction Primes Autoreactive T Cells through Activation of Dendritic Cells. Cell Rep. 2017;18(12):3005-17. https://doi.org/10.1016/j.celrep.2017.02.079.

Vdovenko D, Eriksson U. Regulatory Role of CD4+ T Cells in Myocarditis. J Immunol Res. 2018;2018:4396351. https://doi.org/10.1155/2018/4396351.

Wang J, Han B. Dysregulated CD4+ T Cells and microRNAs in Myocarditis. Front Immunol. 2020;11:539. https://doi.org/10.3389/fimmu.2020.00539.

Wang Y, Tian Q, Ye L. The Differentiation and Maintenance of SARS-CoV-2-Specific Follicular Helper T Cells. Front Cell Infect Microbiol. 2022;12:953022. https://doi.org/10.3389/fcimb.2022.953022.

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 9 10 > >>