Immune inflammation, cellular and humoral immunity in patients with early development of coronary heart disease
Main Article Content
Abstract
The aim – to identify a possible relationship between the early development of coronary artery disease and the level of cellular and humoral indicators of adaptive and innate immunity, immune inflammation in order to clarify the effect of the immune system on the early development of atherosclerosis.
Materials and methods. IHD patients with stable angina pectoris were divided into two groups: the first group (n=112) included patients with the development of clinical manifestations of IHD after 60 years (65.7±4.3 years), the second group (n=108) – patients with the development of clinical manifestations of coronary artery disease before 45 years
(43.7±4.8 years). The material for the immunological study was peripheral venous blood. To determine the parameters of cellular and humoral innate and adaptive immunity in blood serum and supernatants of mononuclear cells, enzyme immunoassay was used.
Results and discussion. Comparative characteristics of patients with the development of clinical manifestations of ischemic heart disease up to 45 years compared with patients with their development after 60 years showed: clinical manifestations of dynamic coronary stenosis – in 33 versus 14 % of patients (p=0.046) (R=–0.21; p=0.046), the presence of heredity of ischemic heart disease – in 45 versus 15 % of patients (p=0.030) (R=–0.31; p=0.029), the level of specific antibodies to the damaged aorta is 10 (10–20) versus 5 (0–10) cu (р=0.033) (R=–0.31; p=0.01), the number of activated B cells with a CD40 index was 9.5 (7.0–11.9) versus 7.1 (5.6–9.9) % (p=0.019) (R=–0.32; p=0.018), free radical oxidation of proteins – 5.2 (4.0–6.6) versus 4.2 (1.7–5.7) cu (p=0.006) (R=–0.19; p=0.005), stable metabolite of blood nitric oxide NO2 – 0.95 (0.58–1.06) and 1.04 (0.70–1.54) mg/ml (p=0.036) (R=0.17; p=0.036), IL-2 in mononuclear cells – 18.7 (15.5–21.3) versus 14.5 (11.4–15.7) pg/ml (p=0.019) (R=–0.43; p=0.016). According to factor analysis, the main independent variables were identified: IL-6 (factor 1), functional and metabolic activity of monocytes (factor 2), antibodies to arterial components (factor 3) and CRP (factor 4). Analysis of multivariate linear regression showed the total relationship of the studied factors with the early development of clinical manifestations of coronary artery disease (R=0.30; F=2.5; p=0.048) with the dominant influence of inflammatory CRP (B=0.19; p=0.046) and activity monocytes (B=0.20; p=0.045). A step-by-step analysis of linear regression found a total relationship between the early development of IHD (R=0.41; F=3.7; p=0.017) with CRP (B=0.21; p=0.10), monocyte activity (B=0.22; p=0.08) and antibodies to arterial components (B=0.21; p=0.11).
Conclusions. The early development of clinical manifestations of coronary artery disease (up to 45 years) compared with their development after 60 years is associated with a high level of activated B-lymphocytes and antibodies to the
tissues of the vascular wall, active synthesis of pro-inflammatory IL-2, and a low level of anti-inflammatory IL-10. A simultaneous increase in the level of CRP, antibodies to arterial components and functional and metabolic activity of monocytes is directly related to the early development of clinical manifestations of coronary artery disease. The early development of ischemic heart disease is accompanied by the presence of heredity of ischemic heart disease, high activity of free-radical oxidation of proteins and expressive impairment of endothelial function.
Article Details
Keywords:
References
Бебешко В.Г., Чумак А.А., Базыка Д.А., Беляева Н.В. Моноклональные антитела в радиационной иммунологии: Методические рекомендации.– К., 1993.–19 с.
Коваленко В.Н., Терзов А.И., Братусь В.В. Сердечно-сосудистая патология при системных ревматических заболеваниях: возможности системной энзимотерапии.– Киев: Четверта хвиля, 2016.– 223 с.
Кондрашова Н.И. Реакция потребления комплемента в новой постановке для выявления противотканевых антител // Лаб. дело.– 1974.– № 9.– С. 552–554.
Применение проточной цитометрии для оценки функциональной активности иммунной системы человека: Пособие для врачей-лаборантов.– М., 2001.– 53 с.
Стандартизация методов иммунофенотипирования клеток крови и костного мозга человека (рекомендации рабочей группы СПб РО РААКИ) // Мед. иммунология.– 1999.– Т. 5.– № 1.– С. 21–43.
Стефани Д.Ф., Вельтищев Ю.Е. Клиническая иммунология и иммунопатология детского возраста.– М.: Медицина, 1996.– 372 с.
Унифицированные иммунологические методы обследования больных на стационарном и амбулаторном этапах лечения: Метод. рекомендации. Киевский НИИ фтизиатрии и пульмонологии. – К., 1988.– 18 с.
Уразгильдеева С.А., Шаталина Л.В., Денисенко А.Д. и др. Взаимосвязь между уровнем холестеринсодержащих иммунных комплексов и чувствительностью липопротеидов к перекисному окислению у больных ишемической болезнью сердца // Кардиология.– 1997.– № 10.– С. 17–20.
Ait-Oufella H., Libby P., Tedgui A. Anticytokine immune therapy and atherothrombotic cardiovascular risk // Arteriosclerosis, Thrombosis, and Vascular Biology.– 2019.– Vol. 39.– P. 1510–1519. doi: https://doi.org/10.1161/atvbaha.119.311998.
Antoniades C., Antonopoulos A.S., Deanfield J. Imaging residual inflammatory cardiovascular risk // Eur. Heart J.– 2020.– Vol. 41, N 6.– P. 748–758. doi: https://doi.org/10.1093/eurheartj/ehz474.
Blaha M.J., Rivera J.J., Budoff M.J. et al. Association between obesity, high-sensitivity C-reactive protein > 2 mg/L, and subclinical atherosclerosis // Arterioscler. Thromb. Vasс. Biol.– 2011.– Vol. 31.– P. 1430–1438. doi: https://doi.org/10.1161/atvbaha.111.223768.
Cahill P.A., Redmond E.M. Vascular endothelium – Gatekeeper of vessel health // Atherosclerosis.– 2016.– Vol. 248.– P. 97–109. doi: https://doi.org/10.1016/j.atherosclerosis.2016.03.007.
Codoñer-Franch P., Tavárez-Alonsoc S., Murria-Estald R. et al. Nitric oxide production is increased in severely obese children and related to markers of oxidative stress and inflammation // Atherosclerosis.– 2011.– Vol. 215, № 2.– P. 475–480. doi: https://doi.org/10.1016/j.atherosclerosis.2010.12.035.
Digeon M., Caser M., Riza J. Detection of immune complexes in human sera by simplified assays with polyethylene glycol // Imm. Methods.– 1977.– Vol. 226.– P. 497–509. doi: 10.1016/0022-1759 (77)90051-5.
Eltoft A., Arntzen K.A., Hansen J.B. et al. C-reactive protein in atherosclerosis – A risk marker but not a causal factor? A 13-year population-based longitudinal study: The Tromsø study // Atherosclerosis.– 2017.– Vol. 263.– P. 293–300. doi: https://doi.org/10.1016/j.atherosclerosis.2017.07.001.
Ghattas A., Griffiths H.R., Devitt A. et al. Monocytes in coronary artery disease and atherosclerosis: where are we now? // J. Am. Coll. Cardiol.– 2013.– Vol. 62, N 17.– P. 1541–1551. doi: https://doi.org/10.1016/j.jacc.2013.07.043.
Hamze M., Desmetz C., Berthe M.L. et al. Characterization of resident B cells of vascular walls in human atherosclerotic patients // J. Immunol.– 2013.– Vol. 191.– P. 3006–3016. doi: https://doi.org/10.4049/jimmunol.1202870.
Huang X., Wang A., Liu X. et al. Association between high sensitivity C-Reactive protein and prevalence of asymptomatic carotid artery stenosis // Atherosclerosis.– 2016.– Vol. 246.– P. 44–49. doi: https://doi.org/10.1016/j.atherosclerosis.2015.12.024.
Jenny N.S., Brown E.R., Detrano R. et al. Associations of inflammatory markers with coronary artery calcification: results from the Multi-Ethnic Study of Atherosclerosis // Atherosclerosis.– 2010.– Vol. 209.– P. 226–229. doi: https://doi.org/10.1016/j.atherosclerosis.2009.08.037.
Khambhati J., Engels M., Allard-Ratick M. et al. Immunotherapy for the prevention of atherosclerotic cardiovascular disease: Promise and possibilities // Atherosclerosis.– 2018.– Vol. 276.– P. 1–9. doi: https://doi.org/10.1016/j.atherosclerosis.2018.07.007.
Kleinbongard P., Heusch G., Schulz R. TNFα in atherosclerosis, myocardial ischemia/reperfusion and heart failure // Pharmacol Ther.– 2010.– Vol. 127.– P. 295–314. doi: https://doi.org/10.1016/j.pharmthera.2010.05.002.
Koller G.M., Schafer C., Kemp S.S. et al. Proinflammatory mediators, IL (interleukin)-1β, TNF (tumor necrosis factor) α, and thrombin directly induce capillary tube regression // Arteriosclerosis, Thrombosis, and Vascular Biology.– 2020.– Vol. 40.– P. 365–377. doi: https://doi.org/10.1161/atvbaha.119.313536.
Komarova Y., Malik A.B. Regulation of endothelial permeability via paracellular and transcellular transport pathways // Annu. Rev. Physiol.– 2010.– Vol. 72.– P. 463–493. doi: https://doi.org/10.1146/annurev-physiol-021909-135833.
Libby P., Lichtman A.H., Hansson G.K. Immune effector mechanisms implicated in atherosclerosis: from mice to humans // Immunity.– 2013.– Vol. 38.– P. 1092–1104. doi: https://doi.org/10.1016/j.immuni.2013.06.009.
Libby P., Loscalzo J., Ridker P.M. et al. Inflammation, immunity, and infection in atherothrombosis // J. Amer. Coll. Cardiology.– 2018.– Vol. 72, N 17. doi: https://doi.org/10.1016/j.jacc.2018.08.1043.
Mohanta S.K., Yin C., Peng L. et al. Artery tertiary lymphoid organs contribute to innate and adaptive immune responses in advanced mouse atherosclerosis // Circ. Res.– 2014.– Vol. 114.– P. 1772–1787. doi: https://doi.org/10.1161/circresaha.114.301137.
Muhl H. Expression nitric oxide synthase in rat glomerular mesangial cells mediated by cyclic AMP / H. Muhl, D. Kunz, J. Pfeilschifter // Br. J. Pharmacol.– 1994.– Vol. 112.– P. 1–8. doi: https://doi.org/10.1111/j.1476-5381.1994.tb13019.x.
Nissen S.E. Clinical implications of inflammation for cardiovascular primary prevention // Eur. Heart J.– 2010.– Vol. 31 (7).– P. 777–783. doi: https://doi.org/10.1093/eurheartj/ehq022.
Puz P., Lasek-Bal A. Repeated measurements of serum consenyrations of TNF-alpha, interleukin-6 and interleukin-10 in the evaluation of internal carotid artery stenosis progression // Atherosclerosis.– 2017.– Vol. 263.– P. 97–103. doi: https://doi.org/10.1016/j.atherosclerosis.2017.06.008.
Ruo-fei J., Long L., Hong L., Xiao-jing C. et al. Meta-analysis of C-Reactive Protein and Risk of Angina Pectoris // A. J. Card.– 2020.– Vol. 125, N 7.– P. 1039–1045. doi: https://doi.org/10.1016/j.amjcard.2020.01.005.
Shantsila E., Tapp L.D., Wrigley B.J., Pamukcu B. Monocyte subsets in coronary artery disease and their associations with markers of inflammation and fibrinolysis // Atherosclerosis.– 2014.– Vol. 234, N 1.– P. 4–10. doi: https://doi.org/10.1016/j.atherosclerosis.2014.02.009.
Snell F.D., Snell C.T. Colorymetric methods of analysis.– New York: Van Nostard, 1984.– 560 p.
Strobel N.A., Fassett R.G., Marsh S.A., Coombes J.S. Oxidative stress biomarkers as predictors of cardiovascular disease // Intern. J. Cardiology.– 2011.– Vol. 147, N 2.– P. 191–201. doi: https://doi.org/10.1016/j.ijcard.2010.08.008.
Tousoulis D., Oikonomou E., Economou E.K. et al. Inflammatory cytokines in atherosclerosis: current therapeutic approaches You have access Restricted access // Heart J.– 2016.– Vol. 37 (22).– P. 1723–1732. doi: https://doi.org/10.1093/eurheartj/ehv759.
Tsiantoulas D., Sage A.P., Mallat Z. et al. Cells in atherosclerosis: closing the gap from bench to bedside/significance // Arterioscler. Thromb. Vasc. Biol.– 2015.– Vol. 35, N 2.– P. 296–302. doi: https://doi.org/10.1161/atvbaha.114.303569.
Van Wijk D.F., Boekholdt S.M., Wareham N.J. et al. C-reactive protein, fatal and nonfatal coronary artery disease, stroke, and peripheral artery disease in the prospective epic-norfolk cohort study // Arterioscler. Thromb. Vascular Biology.– 2013.– Vol. 33.– P. 2888–2894. doi: https://doi.org/10.1161/atvbaha.113.301736.
Weber C., Noels H. Atherosclerosis: current pathogenesis and therapeutic options // Nat Med.– 2011.– Vol. 17.– P. 1410–1422. doi: https://doi.org/10.1038/nm.2538.
Yin K., Liao D.F., Tang C.K. ATP-binding membrane cassette transporter A1 (ABCA1): a possible link between inflammation and reverse cholesterol transport // Mol. Med.– 2010.– Vol. 16.– P. 438–449. doi: https://doi.org/10.2119/molmed.2010.00004.
Yousuf O., Mohanty B.D., Martin S.S. et al. High-sensitivity c-reactive protein and cardiovascular disease: a resolute belief or an elusive link? // J. Am. Coll. Cardiol.– 2013.– Vol. 62 (5).– P. 397–408. doi: https://doi.org/10.1016/j.jacc.2013.05.016.