Diabetes and atherosclerosis: epigenetic mechanisms of pathogenesis. A review
Main Article Content
Abstract
The review summarizes and analyzes epigenetic changes accompanying cardiovascular complications in diabetes. Data on the participation of epigenetic modifications in pathological changes of endothelial cells, smooth muscle cells and macrophages leading to atherosclerosis are presented. The role of various miRNAs in the differentiation, activation, inflammation, proliferation and migration of vascular cells is described. It has been shown that histone modifications, DNA methylation and miRNA spectrum change participate in the initiation and development of cardiovascular diseases in diabetes, and their study and application of the acquired data has great diagnostic, prognostic, and therapeutic potential.
Article Details
Keywords:
References
Asgeirsdottir S.A., van Solingen C., Kurniati N.F. et al. MicroRNA-126 contributes to renal microvascular heterogeneity of VCAM-1 protein expression in acute inflammation // Am. J. Physiol. Renal Physiol.– 2012.– Vol. 302.– P. F1630–F1639.
Baker R.G., Hayden M.S., Ghosh S. NF-kappaB, inflammation, and metabolic disease // Cell. Metab.– 2011.– Vol. 13 (1).– P. 11–22.
Bannister A.J., Kouzarides T. Regulation of chromatin by histone modifications // Cell Res.– 2011.– Vol. 21 (3).– P. 381–395.
Brasacchio D., Okabe J., Tikellis C. et al. Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail // Diabetes.– 2009.– Vol. 58 (5).– P. 1229–1236.
Cash H.L., Mcgarvey S.T., Houseman E.A. et al. Cardiovascular disease risk factors and DNA methylation at the LINE-1 repeat region in peripheral blood from Samoan Islanders // Epigenetics.– 2011.– Vol. 6 (10).– P. 1257–1264.
Caporali A., Meloni M., Vollenkle C. et al. Deregulation of microRNA-503 contributes to diabetes mellitus-induced impairment of endothelial function and reparative angiogenesis after limb ischemia // Circulation.– 2011.– Vol. 123 (3).– P. 282–291.
Chamorro-Jorganes A., Araldi E., Penalva L.O. et al. MicroRNA-16 and microRNA-424 regulate cell-autonomous angiogenic functions in endothelial cells via targeting vascular endothelial growth factor receptor-2 and fibroblast growth factor receptor-1 // Arterioscler. Thromb. Vasc. Biol.– 2011.– Vol. 31.– P. 2595–2606.
Choe N., Kwon J.S., Kim J.R. et al. The microRNA miR-132 targets Lrrfip1 to block vascular smooth muscle cell proliferation and neointimal hyperplasia // Atherosclerosis.– 2013.– Vol. 229.– P. 348–355.
Choe N., Kwon J.S., Kim Y.S. et al. The microRNA miR-34c inhibits vascular smooth muscle cell proliferation and neointimal hyperplasia by targeting stem cell factor // Cell. Signal.– 2015.– Vol. 27.– P. 1056–1065.
Donners M.M., Wolfs I.M., Stoger L.J. et al. Hematopoietic miR155 deficiency enhances atherosclerosis and decreases plaque stability in hyperlipidemic mice // PLoS One.– 2012.– Vol. 7.– P. e35877.
Du F., Yu F., Wang Y. et al. MicroRNA-155 deficiency results in decreased macrophage inflammation and attenuated atherogenesis in apolipoprotein E-deficient mice // Arterioscler. Thromb. Vasc. Biol.– 2014.– Vol. 34.– P. 759–767.
Dunn J., Simmons R., Thabet S., Jo H. The role of epigenetics in the endothelial cell shear stress response and atherosclerosis // Int. J. Biochem. Cell Biol.– 2015.– Vol. 67.– P. 167–176.
Fang F., Yang Y., Yuan Z. et al. Myocardin-related transcription factor A mediates oxLDL-induced endothelial injury // Circ. Res.– 2011.– Vol. 108 (7).– P. 797–807.
Fang Y., Davies P.F. Site-specific microRNA-92a regulation of Kruppel-like factors 4 and 2 in atherosusceptible endothelium // Arterioscler. Thromb. Vasc. Biol.– 2012.– Vol. 32.– P. 979–987.
Fichtlscherer S., De Rosa S., Fox H. et al. Circulating microRNAs in patients with coronary artery disease // Circ. Res.– 2010.– Vol. 107 (5).– P. 677–684.
Findeisen H.M., Gizard F., Zhao Y. et al. Epigenetic regulation of vascular smooth muscle cell proliferation and neointima formation by histone deacetylase inhibition // Arterioscler. Thromb. Vasc. Biol.– 2011.– Vol. 31 (4).– P. 851–860.
Forrest A.R., Kanamori-Katayama M., Tomaru Y. et al. Induction of microRNAs, mir-155, mir-222, mir-424 and mir-503, promotes monocytic differentiation through combinatorial regulation // Leukemia.– 2010.– Vol. 24.– P. 460–466.
Gao Y., Peng J., Ren Z. et al. Functional regulatory roles of microRNAs in atherosclerosis // Clin. Chim. Acta.– 2016.– Vol. 460.– P. 164–171.
Goettsch C., Rauner M., Pacyna N. et al. miR-125b regulates calcification of vascular smooth muscle cells // Am. J. Pathol.– 2011.– Vol. 179.– P. 1594–1600.
Guay S.P., Brisson D., Lamarche B. et al. DNA methylation variations at CETP and LPL gene promoter loci: new molecular biomarkers associated with blood lipid profile variability // Atherosclerosis.– 2013.– Vol. 228 (2).– P. 413–420.
Hu Y.W., Zhao J.Y., Li S.F. et al. RP5-833A20.1/miR-382-5p/NFIA-dependent signal transduction pathway contributes to the regulation of cholesterol homeostasis and inflammatory reaction // Arterioscler. Thromb. Vasc. Biol.– 2015.– Vol. 35.– P. 87–101.
Huang R.S., Hu G.Q., Lin B. et al. MicroRNA-155 silencing enhances inflammatory response and lipid uptake in oxidized low-density lipoprotein-stimulated human THP-1 macrophages // J. Invest. Med.– 2010.– Vol. 58.– P. 961–967.
Iaconetti C., De Rosa S., Polimeni A. et al. Down-regulation of miR-23b induces phenotypic switching of vascular smooth muscle cells in vitro and in vivo // Cardiovasc. Res.– 2015.– Vol. 107.– P. 522–533.
Illingworth R., Kerr A., Desousa D. et al. A novel CpG island set identifies tissue-specific methylation at developmental gene loci // PLoS Biol.– 2008.– Vol. 6.– P. e22.
Jia L., Zhu L., Wang J.Z. et al. Methylation of FOXP3 in regulatory T cells is related to the severity of coronary artery disease // Atherosclerosis.– 2013.– Vol. 228 (2).– P. 346–352.
Jones P.A. Functions of DNA methylation: islands, start sites, gene bodies and beyond // Nat. Rev. Genet.– 2012.– Vol. 13 (7).– P. 484–492.
Kee H.J., Kim G.R., Cho S.N. et al. MiR-18a-5p microRNA increases vascular smooth muscle cell differentiation by downregulating Syndecan4 // Korean Circ. J.– 2014.– Vol. 44.– P. 255–263.
Kim M.H., Ham O., Lee S.Y. et al. MicroRNA-365 inhibits the proliferation of vascular smooth muscle cells by targeting cyclin D1 // J. Cell. Biochem.– 2014.– Vol. 115.– P. 1752–1761.
Kohli R.M., Zhang Y. TET enzymes, TDG and the dynamics of DNA demethylation // Nature.– 2013.– Vol. 502 (7472).– P. 472–479.
Kong X., Fang M., Li P. et al. HDAC2 deacetylates class II transactivator and suppresses its activity in macrophages and smooth muscle cells // J. Mol. Cell. Cardiol.– 2009.– Vol. 46 (3).– P. 292–299.
Kumar A., Kumar S., Vikram A. et al. Histone and DNA methylation-mediated epigenetic downregulation of endothelial Kruppel-like factor 2 by low-density lipoprotein cholesterol // Arterioscler. Thromb. Vasc. Biol.– 2013.– Vol. 33 (8).– P. 1936–1942.
Leeper N.J., Raiesdana A., Kojima Y. et al. MicroRNA-26a is a novel regulator of vascular smooth muscle cell function // J. Cell. Physiol.– 2011.– Vol. 226.– P. 1035–1043.
Li P., Liu Y., Yi B. et al. MicroRNA-638 is highly expressed in human vascular smooth muscle cells and inhibits PDGF-BB-induced cell proliferation and migration through targeting orphan nuclear receptor NOR1 // Cardiovasc. Res.– 2013.– Vol. 99.– P. 185–193.
Li P., Zhu N., Yi B. et al. MicroRNA-663 regulates human vascular smooth muscle cell phenotypic switch and vascular neointimal formation // Circ. Res.– 2013.– Vol. 113.– P. 1117–1127.
Li Q., Chen L., Chen D. et al. Influence of microRNA-related polymorphisms on clinical outcomes in coronary artery disease // Am. J. Transl. Res.– 2015.– Vol. 7 (2).– P. 393–400.
Liao X.B., Zhang Z.Y., Yuan K. et al. MiR-133a modulates osteogenic differentiation of vascular smooth muscle cells // Endocrinology.– 2013.– Vol. 154.– P. 3344–3352.
Lin H.S., Gong J.N., Su R. et al. miR-199a-5p inhibits monocyte/macrophage differentiation by targeting the activin a type 1B receptor gene and finally reducing C/EBPalpha expression // J. Leukoc. Biol.– 2014.– Vol. 96.– P. 1023–1035.
Liu Y., Pan Q., Zhao Y. et al. MicroRNA-155 regulates ROS production, no generation, apoptosis and multiple functions of human brain microvessel endothelial cells under physiological and pathological conditions // J. Cell. Biochem.– 2015.– Vol. 116.– P. 2870–2881.
Lovren F., Pan Y., Quan A. et al. MicroRNA-145 targeted therapy reduces atherosclerosis // Circulation.– 2012.– Vol. 126.– P. S81–S90.
Lynch M., Barallobre-Barreiro J., Jahangiri M., Mayr M. Vascular proteomics in metabolic and cardiovascular diseases // J. Intern. Med.– 2016.– Vol. 280 (4).– P. 325–338.
Madrigal-Matute J., Rotllan N., Aranda J.F., Fernández-Hernando C. MicroRNAs and atherosclerosis // Curr. Atheroscler. Rep.– 2013.– Vol. 15 (5).– P. 322.
Mcdonald O.G., Wamhoff B.R., Hoofnagle M.H., Owens G.K. Control of SRF binding to CArG box chromatin regulates smooth muscle gene expression in vivo // J. Clin. Invest.– 2006.– Vol. 116 (1).– P. 36–48.
Menghini R., Casagrande V., Cardellini M. et al. MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1 // Circulation.– 2009.– Vol. 120.– P. 1524–1532.
Menghini R., Casagrande V., Marino A. et al. MiR-216a: a link between endothelial dysfunction and autophagy // Cell Death Dis.– 2014.– Vol. 5.– P. e1029.
Motawae T.M., Ismail M.F., Shabayek M.I., Seleem M.M. MicroRNAs 9 and 370 association with biochemical markers in T2D and CAD complication of T2D // PLoS ONE.– 2015.– Vol. 10 (5).– P. e0126957.
Nazari-Jahantigh M., Egea V., Schober A., Weber C. MicroRNA-specific regulatory mechanisms in atherosclerosis // J. Mol. Cell. Cardiol.– 2015.– Vol. 89 (Pt A).– P. 35–41.
Niu P.P., Cao Y., Gong T. et al. Hypermethylation of DDAH2 promoter contributes to the dysfunction of endothelial progenitor cells in coronary artery disease patients // J. Transl. Med.– 2014.– Vol. 12.– P. 170.
Orom U.A., Shiekhattar R. Long noncoding RNAs usher in a new era in the biology of enhancers // Cell.– 2013.– Vol. 154 (6).– P. 1190–1193.
Ouimet M., Ediriweera H.N., Gundra U.M. et al. MicroRNA-33-dependent regulation of macrophage metabolism directs immune cell polarization in atherosclerosis // J. Clin. Invest.– 2015.– Vol. 125 (12).– P. 4334–4448.
Pasquier J., Hoarau-Véchot J., Fakhro K. et al. Epigenetics and cardiovascular disease in diabetes // Curr. Diab. Rep.– 2015.– Vol. 15 (12).– P. 108.
Pirola L., Balcerczyk A., Tothill R.W. et al. Genome-wide analysis distinguishes hyperglycemia regulated epigenetic signatures of primary vascular cells // Genome Res.– 2011.– Vol. 21 (10).– P. 1601–1615.
Qi L., Zhi J., Zhang T. et al. Inhibition of microRNA-25 by tumor necrosis factor alpha is critical in the modulation of vascular smooth muscle cell proliferation // Mol. Med. Rep.– 2015.– Vol. 11.– P. 4353–4358.
Ruparelia N., Chai J.T., Fisher E.A., Choudhury R.P. Inflammatory processes in cardiovascular disease: a route to targeted therapies // Nat. Rev. Cardiol.– 2017.– Vol. 14 (3).– P. 133–144.
Schober A., Nazari-Jahantigh M., Wei Y. et al. MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1 // Nat. Med.– 2014.– Vol. 20.– P. 368–376.
Siemelink M., Van Der Laan S., Timmers L. et al. Taking risk prediction to the next level. Advances in biomarker research for atherosclerosis // Curr. Pharm. Des.– 2013.– Vol. 19 (33).– P. 5929–5941.
Siracuse J.J., Chaikof E.L. The Pathogenesis of diabetic atherosclerosis // Diabetes and peripheral vascular disease / Eds. G.V. Shrikhande, J.F. McKinsey.– N.-Y., 2012.– 243 p.
Stather P.W., Sylvius N., Wild J.B. et al. Differential microRNA expression profiles in peripheral arterial disease // Circ. Cardiovasc. Genet.– 2013.– Vol. 6 (5).– P. 490–497.
Sun Y., Chen D., Cao L. et al. MiR-490-3p modulates the proliferation of vascular smooth muscle cells induced by oxLDL through targeting PAPP-A // Cardiovasc. Res.– 2013.– Vol. 100.– P. 272–279.
von der Thusen J.H., Borensztajn K.S., Moimas S. et al. IGF-1 has plaque-stabilizing effects in atherosclerosis by altering vascular smooth muscle cell phenotype // Am. J. Pathol.– 2011.– Vol. 178.– P. 924–934.
Togliatto G., Trombetta A., Dentelli P. et al. Unacylated ghrelin induces oxidative stress resistance in a glucose intolerance and peripheral artery disease mouse model by restoring endothelial cell miR-126 expression // Diabetes.– 2015.– Vol. 64.– P. 1370–1382.
Vasa-Nicotera M., Chen H., Tucci P. et al. miR-146a is modulated in human endothelial cell with aging // Atherosclerosis.– 2011.– Vol. 217.– P. 326–330.
Villeneuve L.M., Kato M., Reddy M.A. et al. Enhanced levels of microRNA-125b in vascular smooth muscle cells of diabetic db/db mice lead to increased inflammatory gene expression by targeting the histone methyltransferase Suv39h1 // Diabetes.– 2010.– Vol. 59 (11).– P. 2904–2915.
Wei Y., Nazari-Jahantigh M., Chan L. et al. The microRNA-342-5p fosters inflammatory macrophage activation through an Akt1- and microRNA-155-dependent pathway during atherosclerosis // Circulation.– 2013.– Vol. 127.– P. 1609–1619.
Wu Y., Huang A., Li t. et al. MiR-152 reduces human umbilical vein endothelial cell proliferation and migration by targeting ADAM17 // FEBS Lett.– 2014.– Vol. 588.– P. 2063–2069.
Xiao L., Liu Y., Wang N. New paradigms in inflammatory signaling in vascular endothelial cells // Am. J. Physiol. Heart Circ. Physiol.– 2014.– Vol. 306 (3).– P. H317–H325.
Xie B., Zhang C., Kang K., Jiang S. MiR-599 inhibits vascular smooth muscle cells proliferation and migration by targeting TGFB2 // PLoS One.– 2015.– Vol. 10.– P. e0141512.
Xu Q., Meng S., Liu B. et al. MicroRNA-130a regulates autophagy of endothelial progenitor cells through Runx3 // Clin. Exp. Pharmacol. Physiol.– 2014.– Vol. 41.– P. 351–357.
Xu Z., Han Y., Liu J. et al. MiR-135b-5p and MiR-499a-3p promote cell proliferation and migration in atherosclerosis by directly targeting MEF2C // Sci. Rep.– 2015.– Vol. 5.– P. 12276.
Yamada Y., Nishida T., Horibe H. et al. Identification of hypo- and hypermethylated genes related to atherosclerosis by a genome-wide analysis of DNA methylation // Int. J. Mol. Med.– 2014.– Vol. 33 (5).– P. 1355–1363.
Yamakuchi M. Endothelial senescence and microRNA // Biomol. Concepts.– 2012.– Vol. 3.– P. 213–223.
Yamamoto S., Narita I., Kotani K. The macrophage and its related cholesterol efflux as a HDL function index in atherosclerosis // Clin. Chim. Acta.– 2016.– Vol. 457.– P. 117–122.
Zhang B.K., Lai X., Jia S.J. Epigenetics in atherosclerosis: a clinical perspective // Discov. Med.– 2015.– Vol. 19 (103).– P. 73–80.
Zhang T., Tian F., Wang J. et al. Endothelial cell autophagy in atherosclerosis is regulated by miR-30-mediated translational control of ATG6 // Cell. Physiol. Biochem.– 2015.– Vol. 37.– P. 1369–1378.
Zhang Y., Liu D., Chen X. et al. Secreted monocytic miR-150 enhances targeted endothelial cell migration // Mol. Cell.– 2010.– Vol. 39.– P. 133–144.
Zhang Y., Zeng C. Role of DNA methylation in cardiovascular diseases // Clin. Exp. Hypertens.– 2016.– Vol. 38 (3).– P. 261–267.
Zhou B., Margariti A., Zeng L. et al. Splicing of histone deacetylase 7 modulates smooth muscle cell proliferation and neointima formation through nuclear beta-catenin translocation // Arterioscler. Thromb. Vasc. Biol.– 2011.– Vol. 31 (11).– P. 2676–2684.
Zhou S., Chen H.Z., Wan Y.Z. et al. Repression of P66Shc expression by SIRT1 contributes to the prevention of hyperglycemia-induced endothelial dysfunction // Circ. Res.– 2001.– Vol. 109 (6).– P. 639–648.
Zhu J., Chen T., Yang L. et al. Regulation of microRNA-155 in atherosclerotic inflammatory responses by targeting MAP3K10 // PLoS One.– 2012.– Vol. 7.– P. e46551.
Zhu N., Zhang D., Chen S. et al. Endothelial enriched microRNAs regulate angiotensin II-induced endothelial inflammation and migration // Atherosclerosis.– 2011.– Vol. 215.– P. 286–293.
Zhuang Y., Peng H., Mastej V., Chen W. MicroRNA regulation of endothelial junction proteins and clinical consequence // Mediators Inflamm.– 2016.– Vol. 2016.– P. 5078627.