Іntramyocardial hemorrhage in patients with ST elevation myocardial infarction: prevalence, association with endothelial function, and significance for the development of postinfarction left ventricular dilatation

Main Article Content

Ya. M. Lutay
O. M. Parkhomenko
Ye. B. Yershova
O. I. Irkin
S. M. Kozhukhov
A. O. Stepura
O. V. Bachynskyi
D. O. Bilyi


The aim – to determine the prevalence and major risk factors of intramyocardial hemorrhage (IMH) in timely revascularized patients with ST elevation myocardial infarction (STEMI), and to evaluate its importance for the development of postinfarction left ventricular (LV) dilatation.
Materials and methods. We examined 24 patients with acute first anterior STEMI, who were admitted in the first six (on average 2.8±1.4) hours from symptoms development. The presence of IMH was assessed by cardiovascular magnetic resonance examination 3-4 days after primary percutaneous coronary intervention (pPCI). Echocardiography was performed during the first 24 hours and day 90 after acute MI. LV dilatation was defined as at least 20 % increase of end-diastolic volume at 90 days. Endothelium-dependent flow-mediated brachial artery dilatation (FMD) was measured using high-resolution ultrasound at admission.
Results and discussion. More than a third (37.5 %) of patients with anterior STEMI who underwent pPCI had signs of IMH. Hemorrhagic transformation of acute myocardial infarction was more often manifested in patients who were prescribed enoxaparin at the prehospital stage (RR = 3.75; 95 % CI 1.47–9.56) and less often in patients with multivessel (≥ 3) coronary artery disease (RR = 0.21; 95 % CI 0.03–1.00). There is a tendency to a more frequent detection of IMH in patients with endothelial dysfunction. Impaired reactive hyperemia (FMD ≤ 4.9 %) was associated with IMH development (RR 3.5; 95 % CI 0.9–13.5). The patients with IMH had a greater extent of myocardial damage according to CK-MB AUC and LGE at MRI and a more frequent development of postinfarction LV dilatation (RR 5.0; 95 % CI 1.3–19.7). The addition of intravenous quercetin started before pPCI to the standard basic treatment of acute myocardial infarction was associated with a significant decrease in the probability of hemorrhagic transformation (RR 0.21; 95 % CI 0.03–1.00).
Conclusions. Pre-hospital administration of enoxaparin and endothelial dysfunction were the main predictors of IMH after pPCI in STEMI patients, whereas it was detected much less frequently in patients with multivessel (≥ 3) coronary artery disease. The presence of IMG has been associated with a greater extent of necrotized myocardium and more frequent development of postinfarction dilatation and dysfunction of the LV.


Article Details


intramyocardial hemorrhage, acute myocardial infarction, postinfarction dilation, endothelial dysfunction


Корвітин. Інструкція для медичного застосування лікарського засобу // http://mozdocs.kiev.ua/likiview.php?id=43418.

Пархоменко А.Н., Кожухов С.Н., Лутай Я.М. Обоснование и дизайн многоцентрового рандомизированного исследования ПРОТЕКТ – изучение эффективности и безопасности применения кверцетина у пациентов с острым инфарктом миокарда // Укр. кардіол. журн.– 2016.– № 3.– С. 31–36.

Шиллep H., Оcипoв M.A. Kлиническaя эxoкapдиoгpaфия.– 2-e изд. – М.: Пpaктикa, 2005.– C. 62–73.

Amier R.P., Tijssen R.Y.G., Teunissen P.F.A. et al. Predictors of Intramyocardial Hemorrhage After Reperfused ST-Segment Elevation Myocardial Infarction // J. Am. Heart Assoc.– 2017.– Vol. 6 (8).– pii: e005651. doi: https://doi.org/10.1161/JAHA.117.005651.

Basso C., Corbetti F., Silva C. et al. Morphologic validation of reperfused hemorrhagic myocardial infarction by cardiovascular magnetic resonance // Am. J. Cardiol.– 2007.– Vol. 100.– P. 1322–1327. doi: https://doi.org/10.1016/j.amjcard.2007.05.062.

Beek A.M., Nijveldt R., van Rossum A.C. Intramyocardial hemorrhage and microvascular obstruction after primary percutaneous coronary intervention // Int. J. Cardiovasc. Ima­­­ging.– 2010.– Vol. 26.– P. 49–55. doi: https://doi.org/10.1007/s10554-009-9499-1.

Bekkers S.C., Smulders M.W., Passos V.L. et al. Clinical implications of microvascular obstruction and intramyocardial haemorrhage in acute myocardial infarction using cardiovascular magnetic resonance imaging // Eur. Radiol.– 2010.– Vol. 20.– P. 2572–2578. doi: https://doi.org/10.1007/s00330-010-1849-9.

Bogaert J., Dymarkowski S. Delayed contrast-enhanced MRI: use in myocardial viability assessment and other cardiac pathology // Eur. Radiol.– 2005.– Vol. 15 (Suppl. 2).– P. 52–58. doi: https://doi.org/10.1007/s10406-005-0093-x.

Caravan P., Das B., Dumas S. et al. Collagen-targeted MRI contrast agent for molecular imaging of fibrosis // Angew. Chem. Int. Edition.– 2007.– Vol. 46, N 43.– P. 8171–8173. doi: https://doi.org/10.1002/anie.200700700.

Carrick D., Haig C., Ahmed N. et al. Myocardial hemorrhage after acute reperfused ST-segment-elevation myocardial infarction: relation to microvascular obstruction and prognostic significance // Circ. Cardiovasc. Ima­­ging.– 2016.– Vol. 9.– P. e004148. doi: https://doi.org/10.1161/CIRCIMAGING.115.004148.

Chan J., Hanekom L., Wong C. et al. Differentiation of subendocardial and transmural infarction using two-dimensional strain rate imaging to assess short-axis and long-axis myocardial function // J. Am. Coll. Cardiol.– 2006.– Vol. 48.– P. 2026–2033. doi: https://doi.org/10.1016/j.jacc.2006.07.050.

Dandel M., Lehmkuhl H., Knosalla C. et al. Strain and strain rate imaging by echocardiography: basic concepts and clinical applicability // Curr. Cardiol. Rev.– 2009.– Vol. 5.– P. 133–148. doi: https://doi.org/10.2174/157340309788166642.

Eitel I., Kubusch K., Strohm O. et al. Prognostic value and determinants of a hypointense infarct core in T2-weighted cardiac magnetic resonance in acute reperfused ST-eleva­­­tion-myocardial infarction // Circ. Cardiovasc. Ima­­­ging.– 2011.– Vol. 4.– P. 354–362. doi: https://doi.org/10.1161/CIRCIMAGING.110.960500.

Friedrich M.G. Tissue characterization of acute myocardial infarction and myocarditis by cardiac magnetic resonance // JACC Cardiovasc. Imaging.– 2008.– Vol. 1 (5).– P. 652–662. doi: https://doi.org/10.1016/j.jcmg.2008.07.011.

Gori A.M., Fedi S., Pepe G. et al. Tissue factor and tissue factor pathway inhibitor levels in unstable angina patients during short-term low-molecular-weight heparin administration // Br. J. Haematol.– 2002.– Vol. 117 (3).– P. 693–698. doi: https://doi.org/10.1046/j.1365-2141.2002.03522.x.

Gupta A., Lee V.S., Chung Y.C. et al. Myocardial infarction: optimization of inversion times at delayed contrast-enhanced MR imaging // Radiology.– 2004.– Vol. 233.– P. 921–926. doi: https://doi.org/10.1148/radiol.2333032004.

Hashimoto I., Li X., Hejmadi Bhat A. et al. Myocardial strain rate is a superior method for evaluation of left ventricular subendocardial function compared with tissue Doppler imaging // J. Am. Coll. Cardiol.– 2003.– Vol. 42.– P. 1574–1583. doi: https://doi.org/10.1016/j.jacc.2003.05.002.

Hung C.L., Verma A., Uno H. et al. Longitudinal and Circumferential Strain Rate, Left Ventricular Remodeling, and Prognosis After Myocardial Infarction // JACC.– 2010.– Vol. 56, N 22.– P. 1812–22. doi: https://doi.org/10.1016/j.jacc.2010.06.044.

Hurlburt H.M., Aurigemma G.P., Hill J.C. et al. Direct ultrasound measurement of longitudinal, circumferential, and radial strain using 2-dimensional strain imaging in normal adults // Echocardiography.– 2007.– Vol. 24.– P. 723–731. doi: https://doi.org/10.1111/j.1540-8175.2007.00460.x.

Husser O., Monmeneu J.V., Sanchis J. et al. Cardiovascular magnetic resonance-derived intramyocardial hemorrhage after STEMI: Influence on long-term prognosis, adverse left ventricular remodeling and relationship with microvascular obstruction // Int. J. Cardiol.– 2013.– Vol. 167.– P. 2047–2054. doi: https://doi.org/10.1016/j.ijcard.2012.05.055.

Ibanez B., James S., Agewall S. et al. 2017 ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: the Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC) // Eur. Heart J.– 2018.– Vol. 39 (2).– P. 119–177. doi: https://doi.org/10.1093/eurheartj/ehx393.

Joyce E., Hoogslag G.E., Leong D.P. et al. Association Between Left Ventricular Global Longitudinal Strain and Adverse Left Ventricular Dilatation After ST-Segment-Elevation Myocardial Infarction // Circ. Cardiovasc. Imaging.– 2014.– Vol. 7 (1).– P. 74–81. doi: https://doi.org/10.1161/CIRCIMAGING.113.000982.

Jugdutt B.I. Ventricular remodeling after infarction and the extracellular collagen matrix: when is enough enough? // Circulation.– 2003.– Vol. 108, № 11.– P. 1395–1403. doi: https://doi.org/10.1161/01.CIR.0000085658.98621.49.

Kali A., Tang R.L., Kumar A. et al. Detection of acute reperfusion myocardial hemorrhage with cardiac MR imaging: T2 versus T2 // Radiology.– 2013.– Vol. 269.– P. 387–395. doi: 10.1148/radiol.13122397.

Kellman P., Arai A.E., McVeigh E.R. et al. Phase-sensitive inversion recovery for detecting myocardial infarction using gadolinium-delayed hyperenhancement // Magn. Reson. Med.– 2002.– Vol. 47.– P. 372–383. doi: https://doi.org/10.1002/mrm.10051.

Kim R.J., Chen E.L., Lima J.A. et al. Myocardial Gd-DTPA kinetics determine MRI contrast enhancement and reflect the extent and severity of myocardial injury after acute reperfused infarction // Circulation.– 1996.– Vol. 94.– P. 3318–3326. doi: https://doi.org/10.1161/01.cir.94.12.3318.

Lang R.M., Bierig M., Devereux R.B. et al. Recommendations for chamber quantification // Eur. J. Echocardiography.– 2006.– Vol. 7.– P. 79–108. doi: https://doi.org/10.1016/j.echo.2005.10.005.

Lotan C.S., Bouchard A., Cranney G.B. et al. Assessment of postreperfusion myocardial hemorrhage using proton NMR imaging at 1.5 T // Circulation.– 1992.– Vol. 86.– P. 1018–1025. doi: https://doi.org/10.1161/01.cir.86.3.1018.

Mahnken A.H., Gunther R.W., Krombach G. Contrast-enhanced MR and MSCT for the assessment of myocardial viability // Rofo.– 2006.– Vol. 178.– P. 771–780. doi: https://doi.org/10.1055/s-2006-926874.

Mahrholdt H., Wagner A., Holly T.A. et al. Reproducibility of chronic infarct size measurement by contrast-enhanced magnetic resonance imaging // Circulation.– 2002.– Vol. 106.– P. 2322–2327. doi: https://doi.org/10.1161/01.cir.0000036368.63317.1c.

Mather A.N., Fairbairn T.A., Artis N.J. et al. Timing of cardiovascular MR imaging after acute myocardial infarction: effect on estimates of infarct characteristics and prediction of late ventricular remodeling // Radiology.– 2011.– Vol. 261.– P. 116–126. https://doi.org/10.1186/1532-429X-13-S1-M9.

Mizuguchi Y., Oishi Y., Miyoshi H. et al. The functional role of longitudinal, circumferential, and radial myocardial deformation for regulating the early impairment of left ventricular contraction and relaxation in patients with cardiovascular risk factors: a study with two-dimensional strain imaging // J. Am. Soc. Echocardiogr.– 2008.– Vol. 21.– P. 1138–1144. doi: https://doi.org/10.1016/j.echo.2008.07.016.

Niccoli G., Burzotta F., Galiuto L. et al. Myocardial no-reflow in humans // J. Am. Coll. Cardiol.– 2009.– Vol. 54.– P. 281–292. doi: https://doi.org/10.1016/j.jacc.2009.03.054.

O’Regan D.P., Ariff B., Neuwirth C. et al. Assessment of severe reperfusion injury with T2* cardiac MRI in patients with acute myocardial infarction // Heart.– 2010.– Vol. 96.– P. 1885–1891. doi: https://doi.org/10.1136/hrt.2010.200634.

Orii M., Hirata K., Tanimoto T. et al. Two-dimensional speckle tracking echocardiography for the prediction of reversible myocardial dysfunction after acute myocardial infarction: comparison with magnetic resonance imaging // Echocardiography.– 2015.– Vol. 32.– P. 768–767. https://doi.org/10.1111/echo.12726.

Park Y.H., Kang S.J., Song J.K. et al. Prognostic value of longitudinal strain after primary reperfusion therapy in patients with anterior-wall acute myocardial infarction // J. Am. Soc. Echocardiogr.– 2008.– Vol. 21.– P. 262–267. doi: https://doi.org/10.1016/j.echo.2007.08.026.

Petersen S.E., Mohrs O.K., Horstick G. et al. Influence of contrast agent dose and image acquisition timing on the quantitative determination of nonviable myocardial tissue using delayed contrast-enhanced magnetic resonance imaging. // J. Cardiovasc. Magn. Reson.– 2004.– Vol. 6.– P. 541–548. https://doi.org/10.1081/JCMR-120030581.

Reffelmann T., Kloner R.A. The no-reflow phenomenon: a basic mechanism of myocardial ischemia and reperfusion // Basic Res. Cardiol.– 2006.– Vol. 101.– P. 359–372. doi: https://doi.org/10.1007/s00395-006-0615-2.

Reinstadler S.J., Stiermaier T., Reindl M. et al. Intramyocardial hemorrhage and prognosis after ST-elevation myocardial infarction // Eur. Heart J. Cardiovasc. Imaging.– 2019.– Vol. 20 (2).– P. 138–146. doi: https://doi.org/10.1093/ehjci/jey101.

Russo J.J., Wells G.A., Chong A.Y. et al. Safety and Efficacy of staged percutaneous coronary intervention during index admission for ST-elevation myocardial infarction with multivessel coronary disease (Insights from the University of Ottawa Heart Institute STEMI Registry) // Am. J. Cardiol.– 2015.– Vol. 116.– P. 1157–1162. doi: https://doi.org/10.1016/j.amjcard.2015.07.029.

StatSoft, Inc. (2004). STATISTICA (data analysis software system), version 7. www.statsoft.com Vogel-Claussen J., Rochitte C.E., Wu K.C. et al. Delayed enhancement MR imaging: utility in myocardial assessment // Radiographics.– 2006. – Vol. 26.– P. 795–810. doi: https://doi.org/10.1148/rg.263055047.

Vollmer R.T., Christenson R.H., Reimer K. et al. Temporal creatine kinase curves in acute myocardial infarction. Implications of a good empiric fit with the log-normal function // Am. J. Clin. Pathol.– 1993.– Vol. 100.– P. 293–298. doi: https://doi.org/10.1093/ajcp/100.3.293.

Wang J., Khoury D.S., Yue Y. et al. Preserved left ventricular twist and circumferential deformation, but depressed longitudinal and radial deformation in patients with diastolic heart failure // Eur. Heart J.– 2008.– Vol. 29.– P. 1283–1289. doi: https://doi.org/10.1093/eurheartj/ehn141.

Watson T.J., Ong P.J.L., Tcheng J.E. Primary angioplasty: a practical guide.– Singapore: Springer, 2018.

Zalewski J., Undas A., Godlewski J. et al. No-reflow phenomenon after acute myocardial infarction is associated with reduced clot permeability and susceptibility to lysis // Arterioscler. Thromb. Vasc. Biol.– 2007.– Vol. 27.– P. 2258–2265. doi: https://doi.org/10.1161/ATVBAHA.107.149633.

Zhang Y., Chan A.K., Yu C.M. et al. Strain rate imaging differentiates transmural from non-transmural myocardial infarction a validation study using delayed-enhancement magnetic resonance imaging // J. Am. Coll. Cardiol.– 2005.– Vol. 46.– P. 864–871. doi: https://doi.org/10.1016/j.jacc.2005.05.054.

Zia M.I., Ghugre N.R., Connelly K.A. et al. Characterizing myocardial edema and hemorrhage using quantitative T2 and T2* mapping at multiple time intervals post ST-segment elevation myocardial infarction // Circ. Cardiovasc. Imaging.– 2012.– Vol. 5.– P. 566–572. doi: https://doi.org/10.1161/CIRCIMAGING.112.973222.

Most read articles by the same author(s)

1 2 3 4 > >>