Effect of multicomponent therapy on left ventricular diastolic function in resistant hypertension patients

Main Article Content

O. O. Matova
L. А. Mishchenko
O. B. Kuchmenko


The aim – to determine prognostic factors of improving left ventricular diastolic function (LV DF) in resistant hypertension (RH) patients (pts) treated with multicomponent antihypertensive therapy during three years.
Materials and methods. 102 patients with true RH were included. Patients received triple fixed combination (blocker of the renin-angiotensin-aldosterone system / calcium antagonist / diuretic), to which has been added a fourth drug (spironolactone, eplerenone, moxonidine, torasemide or nebivolol). The state of LV DF was studied at the beginning and at the end of the study. Office and 24-h ambulatory blood pressure (BP) measurements, echocardiography, clinical characteristics, neurohumoral and proinflammatory status were assessed.
Results and discussion. Impairment LV DF was detected in 75.5 % of pts. The first degree of LV diastolic dysfunction (DD) was observed in 63.7 %. The patients were divided into 2 groups: the first group included persons without initial impairment of LV DF (n=25), the second – pts with LV DD (n=77). Patients with LV DD were older, had a longer duration of hypertension, higher body mass index, 24-h urinary albumin excretion, office BP and 24-h ambulatory BP, more often (in 2 times) disorders of circadian BP rhythm and concomitant diabetes mellitus (DM). Left ventricular DD in 100 % of cases was associated with severe LV hypertrophy (LVH), increased plasma concentration of inflammatory proteins (CRP, fibrinogen), cytokines (IL-6, TNF-α), increased activity of leukocyte elastase, macrophage matrix metalloproteinase-12. The concentration in the blood of aldosterone, active renin, 24-h urinary excretion of metanephrines did not differ between the groups.
Conclusions. Improvement and stabilization of LV DF occurred in parallel with regression of LVH (normalization of LVMI in 35.1 % of pts and significant decrease of LVMI in 64.9 %) against the background of decrease of BP and in the proportion of pts with disturbed circadian BP rhythm. The independent factors of the E/E’ ratio were the initial plasma concentrations of aldosterone (β=0.556; р=0.0001), glucose (β=0.366; р=0.0001), active renin (β=–0.223; р=0.004), 24-h urinary albumin excretion (β=0.188; р=0.016), age (β=0,192; р=0,023). The odds of an improvement in LV DF increased by 3.7 times, if the patient with RH had no DM, LVH regression occurred.

Article Details


resistant arterial hypertension, left ventricular diastolic dysfunction, multicomponent antihypertensive therapy, predictors of left ventricular diastolic function improvement.


Кубишкін А.В., Харченко В.З., Семенець П.Ф. та ін. Методи визначення активності неспецифічних протеїназ і їх інгібіторів у сироватці крові і біологічних рідинах / Методичні рекомендації. – К., 2010.– 28 c.

Aljaroudi W., Alraies M.C., Halley C. et al. Impact of progression of diastolic dysfunction on mortality in patients with normal ejection fraction // Circulation.– 2012.– Vol. 125 (6).– P. 782–788. https://doi.org/10.1161/CIRCULATIONAHA.111.066423.

Álvarez-Aliaga A., Frómeta-Guerra A., Suárez-Quesada A. et al. Prognostic model of the adaptive changes from hypertensive cardiopathy: from mild diastolic dysfunction to depressed systolic function. Modelo pronóstico de los cambios evolutivos de la cardiopatía hipertensiva: desde la disfunción diastólica leve hasta la función sistólica deprimida // Medwave.– 2020.– Vol. 20 (3).– P. e7873. https://doi.org/10.5867/medwave.2020.03.7873.

Baron S., Amar L., Faucon A.L. et al. Criteria for diagnosing primary aldosteronism on the basis of liquid chromatography-tandem mass spectrometry determinations of plasma aldosterone concentration // J. Hypertens.– 2018.– Vol. 36 (7).– P. 1592–1601. https://doi.org/10.1097/HJH.0000000000001735.

Daugherty S.L., Powers J.D., Magid D.J. et al. Incidence and prognosis of resistant hypertension in hypertensive patients // Circulation.– 2012.– Vol. 125 (13).– P. 1635–1642. https://doi.org/10.1161/CIRCULATIONAHA.111.068064.

Dutka M., Bobiński R., Ulman-Włodarz I. et al. Various aspects of inflammation in heart failure // Heart Fail. Rev.– 2020.– Vol. 25 (3).– P. 537–548.https://doi.org/10.1007/s10741-019-09875-1.

Echouffo-Tcheugui J.B., Erqou S., Butler J. et al. Assessing the risk of progression from asymptomatic left ventricular dysfunction to overt heart failure: A systematic overview and meta-analysis // JACC Heart Fail.– 2016.– Vol. 4 (4).– P. 237–248. https://doi.org/10.1016/j.jchf.2015.09.015.

Fouassier D., Blanchard A., Fayol A. et al. Sequential nephron blockade with combined diuretics improves diastolic function in patients with resistant hypertension // ESC Heart Fail.– 2020.– Vol. 7(5).– P. 2561–2571. https://doi.org/10.1002/ehf2.12832.

Frangogiannis N.G. Cardiac fibrosis: Cell biological mechanisms, molecular pathways and therapeutic opportunities // Mol. Aspects Med.– 2019.– Vol. 65.– P. 70–99. https://doi.org/10.1016/j.mam.2018.07.001.

Gupta A., Schiros C.G., Gaddam K.K. et al. Effect of spironolactone on diastolic function in hypertensive left ventricular hypertrophy // J. Hum. Hypertens.– 2015.– Vol. 29 (4).– P. 241–246. https://doi.org/10.1038/jhh.2014.83.

Kaczmarski K.R., Sozio S.M., Chen J. et al. Resistant hypertension and cardiovascular disease mortality in the US: results from the National Health and Nutrition Examination Survey (NHANES) // BMC Nephrol.– 2019.– Vol. 20 (1).– P. 138. https://doi.org/10.1186/s12882-019-1315-0.

Kane G.C., Karon B.L., Mahoney D.W. et al. Progression of left ventricular diastolic dysfunction and risk of heart failure // JAMA.– 2011.– Vol. 306 (8).– P. 856–863. https://doi.org/10.1001/jama.2011.1201.

Kordalis A., Tsiachris D., Pietri P. et al. Regression of organ damage following renal denervation in resistant hypertension: a meta-analysis // J. Hypertens.– 2018.– Vol. 36 (8).– P. 1614–1621. https://doi.org/10.1097/HJH.0000000000001798.

Mancia G., Laurent S., Agabiti-Rosei E. et al. Reappraisal of European guidelines on hypertension management: a European Society of Hypertension Task Force document // J. Hypertens.– 2009.– Vol. 27 (11).– P. 2121–2158. https://doi.org/10.1097/HJH.0b013e328333146d.

Mocan M., Mocan Hognogi L.D., Anton F.P. et al. Biomarkers of Inflammation in Left Ventricular Diastolic Dysfunction // Dis Markers.– 2019.– Vol. 2019.– P. 7583690. https://doi.org/10.1155/2019/7583690.

Nadruz W., Shah A.M., Solomon S.D. Diastolic dysfunction and hypertension // Med. Clin. North Am.– 2017.– Vol. 101 (1).– P. 7–17. https://doi.org/10.1016/j.mcna.2016.08.013.

Nagueh S.F., Smiseth O.A., Appleton C.P. et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging // J. Am. Soc. Echocardiogr.– 2016.– Vol. 29 (4).– P. 277–314. https://doi.org/10.1016/j.echo.2016.01.011.

Nazário Leão R., Marques da Silva P., Marques Pocinho R. et al. Determinants of left ventricular diastolic dysfunction in hypertensive patientsFactores Asociados a la Disfunción Diastólica del Ventrículo Izquierdo en Pacientes con Hipertensión Arterial // Hipertensión Riesgo Vascular.– 2018.– Vol. 35 (4).– P. 160–168. https://doi.org/10.1016/j.hipert.2017.12.002.

Perrone-Filardi P., Coca A., Galderisi M. et al. Noninvasive cardiovascular imaging for evaluating subclinical target organ damage in hypertensive patients: a consensus article from the European Association of Cardiovascular Imaging, the European Society of Cardiology Council on Hypertension and the European Society of Hypertension // J. Hypertens.– 2017.– Vol. 35 (9).– P. 1727–1741. https://doi.org/10.1097/HJH.0000000000001396.

Şengül E., Sahin T., Çağlayan C., Yilmaz A. Effect of Spironolactone on Diastolic Heart Function in Patients with Chronic Kidney Disease // Turkish. J. Nephrol.– 2010.– Vol. 19.– P. 186–191 https://doi.org/10.5262/tndt.2010.1003.06.

Sim J.J., Bhandari S.K., Shi J. et al. Comparative risk of renal, cardiovascular, and mortality outcomes in controlled, uncontrolled resistant, and nonresistant hypertension // Kidney Int.– 2015.– Vol. 88 (3).– P. 622–632. https://doi.org/10.1038/ki.2015.142.

Tsioufis C., Kasiakogias A., Kordalis A. et al. Dynamic resistant hypertension patterns as predictors of cardiovascular morbidity: a 4-year propective study // J. Hypertens.– 2014.– Vol. 32 (2).– P. 415–422. https://doi.org/10.1097/HJH.0000000000000023.

Ubaid-Girioli S., Adriana de Souza L., Yugar-Toledo J.C. et al. Aldosterone excess or escape: Treating resistant hypertension // J. Clin. Hypertens. (Greenwich).– 2009.– Vol. 11 (5).– P. 245–252. https://doi.org/10.1111/j.1751-7176.2009.00110.x.

Wang S., Yang S., Zhao X., Shi J. Effects of Renal Denervation on Cardiac Structural and Functional Abnormalities in Patients with Resistant Hypertension or Diastolic Dysfunction // Sci Rep.– 2018.– Vol. 8 (1). – P.1172. https://doi.org/10.1038/s41598-017-18671-6.

Williams B., Mancia G., Spiering W. et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. The Task Force for the management of arterial hypertension of the European Society of Cardiology (ESC) and the European Society of Hypertension (ESH) // Eur. Heart J.– 2018.– Vol. 39.– P. 3021–3104. https://doi.org/10.1093/eurheartj/ehy339.

Zhou D., Huang Y., Fu M. et al. Prognostic value of tissue Doppler E/e’ ratio in hypertension patients with preserved left ventricular ejection fraction // Clin. Exp. Hypertens.– 2018.– Vol. 40 (6).– P. 554–559. https://doi.org/10.1080/10641963.2017.1407332.

Most read articles by the same author(s)