Renin-angiotensin system: known scientific facts and modern conception of cardiometabolic effects
Main Article Content
Abstract
The article is devoted to review of published sources regarding the identification of renin-angiotensin system components and their trigger role in pathophysiological processes with transformation in cardiovascular diseases and metabolic dysfunction. Based on definition of biological effects the modern interpretation of the distribution the multifunctional complex in two parts as classical axis and non-classical axis of renin-angiotensin system is shown. The injure actions of classical axis of renin-angiotensin system with vasoconstriction, activation of proinflammatory cascade, oxidant stress, proliferative processes, violation of glucose and lipid homeostasis, cardiovascular remodeling, heart failure, insulin resistance, obesity are emphasized. The special attention is paid to the description of counterregulatory actions related to angiotensin ІІ of renin-angiotensin system alternative axis for protection of cardiovascular diseases, correction of metabolic disorders. Taking in account the results of experimental and clinical investigation is presented the argumentation for evaluation of agonists and antagonists relevant to alternative renin-angiotensin system components aimed to creation the novel class of pharmacological agents with future implementation in clinical practice.
Article Details
Keywords:
References
Bindom SM, Lazartigues E. The sweeter side of ACE2: physiological evidence for a role in diabetes. Mol. Cell. Endocrinol. 2008;302:193-202. doi: https://doi.org/10.1016/j.mce.09.020.
Borghi F, Sevá-Pessôa B, Grassi-Kassisse DM. The adipose tissue and the involvement of the renin-angiotensin-aldosterone system in cardiometabolic syndrome. Cell Tissue Res. 2016. DOI https://doi.org/10.1007/s00441-016-2515-6.
Botelho-Santos GA, Sampaio WO, Reudelhuber TL, et al. Expression of an angiotensin-(1-7)-producing fusion protein in rats induced marked changes in regional vascular resistance. Am J Physiol Heart Circ Physiol. 2007;292:H2485-90.
Campagnole-Santos MJ, Diz DI, Santos RA, et al. Cardiovascular effects of angiotensin-(1-7) injected into the dorsal medulla of rats. Am J Physiol Heart Circ Physiol. 1989;257(1 Pt 2):H324-9. doi: https://doi.org/10.1152/ajpheart.1989.257.1.H324.
Delli-Pіzzi AM, Hilchey SD, Bell-Quilley CP. Natriuretic action of angiotensin (1-7). Br J Pharmacol. 1994;111:1-3. doi:https://doi.org/10.1111/j.1476-5381.1994.tb14014.x
Donoghue M, Hsieh F, Baronas E, et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res. 2000;87:E1-9. doi: https://doi.org/10.1161/01.res.87.5.e1.
Dünner N, Quezada C, Berndt FA, Cánovas J, Rojas CV (2013) Angiotensin II signaling in human preadipose cells: participation of ERK1,2-dependent modulation of Akt. PLoS ONE. Cell Tissue Res. 2016;8:e75440. DOI: https://doi.org/10.1007/s00441-016-2515-6.
Echeverría-Rodríguez O, Del Valle-Mondragón L, Hong E. Angiotensin 1-7 improves insulin sensitivity by increasing skeletal muscle glucose uptake in vivo. Peptides. 2014;51:26-30.
Favre GA, Esnault VLM, Van Obberghen E. Modulation of glucose metabolism by the renin-angiotensin-aldosterone system. Am J Physiol Endocrinol Metab. 2015;308(06): E435-49.
Flores-Muñoz M, Godinho BM, Almalik, et al. Adenoviral delivery of angiotensin-(1-7) or angiotensin-(1-9) inhibits cardiomyocyte hypertrophy via the mas or angiotensin type 2 receptor. PLoS One. 2012;7:e45564. doi: https://doi.org/10.1371/journal.pone.0045564.
Flores-Munoz M, Work LM, Douglas K, et al. Angiotensin (1-9) attenuates cardiac fibrosis in the stroke-prone spontaneously hypertensive rat via the angiotensin type 2 receptor. Hypertension. 2012;59:300-7. doi: https://doi.org/10.1161/HYPERTENSIONAHA.111.177485.
Fontes MA, Silva LC, Campagnole-Santos MJ, et al. Evidence that angiotensin-(1-7) plays a role in the central control of blood pressure at the ventro-lateral medulla acting through specific receptors. Brain Res. 665:175-80, 1994. doi: https://doi.org/10.1016/0006-8993(94)91171-1.
Frigolet ME, Torres N, Tovar AR. The renin-angiotensin system in adipose tissue and its metabolic consequences during obesity. J Nutritional Biochem. 2013;24(12):2003-15.
Giani JF, Mayer MA, Muñoz MC, et al. Chronic infusion of angiotensin-(1-7) improves insulin resistance and hypertension induced by a high-fructose diet in rats. Am J Physiol Endocrinol Metab. 2009;296:E262-71. doi: https://doi.org/10.1152/ajpendo.90678.2008.
Gironacci MM. Angiotensin-(1–7): beyond its central effects on blood pressure. Ther Adv Cardiovasc Dis. 2015;9:209-16.
Gupte M, Thatcher SE, Boustany-Kari CM, et al. Angiotensin converting enzyme 2 contributes to sex differences in the development of obesity hypertension in C57BL/6 mice. Arterioscler Thromb Vasc Biol. 2012;32:1392-9. doi: https://doi.org/10.1161/ATVBAHA.112.248559.
Joshua J, Tcheugui JD, Effoe VS, et al. Renin-Angiotensin-Aldosterone System, Glucose Metabolism and Incident Type 2 Diabetes Mellitus. MESA J Amer Heart Ass. 2018;7:17-24.
Kassiri Z, Zhong J, Guo D, et al. Loss of angiotensin-converting enzyme 2 accelerates maladaptive left ventricular remodeling in response to myocardial infarction. Circ Heart Fail. 2009;2:446-55. doi: https://doi.org/10.1161/CIRCHEARTFAILURE.108.840124 31.
Liu C, Lv XH, Li HX, et al. Angiotensin-(1–7) suppresses oxidative stress and improves glucose uptake via Mas receptor in adipocytes. Acta Diabetol. 2012;49:291-9.
Macedo SM, Guimarares TA, Andrade JM, et al. Angiotensin converting enzyme 2 activator (DIZE) modulates metabolic profiles in mice, decreasing lipogenesis. Protein Pept Lett. 2015;22:332-40.
Marcus Y, Shefer G, Stern. Adipose tissue renin-angiotensin-aldosteron system (RAAS) and progression of insulin resistance. Mol Cell Endocrinol. 2013;378:1-14. DOI :https://doi.org/10.1016/jmce 2012.06.021.
Mercure C, Yogi A, Callera GE, et al. Angiotensin(1-7) blunts hypertensive cardiac remodeling by a direct effect on the heart. Circ Res. 2008;103:1319-26. doi: https://doi.org/10.1161/CIRCRESAHA.108.184911.
Mori J, Patel VB, Ramprasath T, et al. Angiotensin 1–7 mediates renoprotection against diabetic nephropathy by reducing oxidative stress, inflammation, and lipotoxicity. Am J Physiol Renal Physiol. 2014;306:F812-21. doi: https://doi.org/10.1152/ajprenal.00655.2013.
Nadarajah R, Milagres R, Dilauro M, et al. Podocyte-specific overexpression of human angiotensin-converting enzyme 2 attenuates diabetic nephropathy in mice. Kidney Int. 2012;82:292-303. doi:https://doi.org/10.1038/ki.2012.83.
Ocaranza MP, Lavandero S, Jalil JE, et al. Angiotensin-(1-9) regulates cardiac hypertrophy in vivo and in vitro. J Hypertens. 2010;28:1054-64. doi: https://doi.org/10.1097/hjh.0b013e328335d291.
Prestes TR, Rocha NP, Miranda AS, et al. The anti-inflammatory potential of ace2/angiotensin-(1-7)/mas receptor axis: evidence from basic and clinical research. Curr Drug Targets. 2017;18(11):1301-13. doi: https://doi.org/10.2174/1389450117666160727142401.
Putnam K, Batifoulier-Yiannikouris F, Bharadwaj KG, et al. Deficiency of angiotensin type 1a receptors in adipocytes reduces differentiation and promotes hypertrophy of adipocytes in lean mice. Endocrinology. 2012;153:4677-86.
Putnam K, Shoemaker R, Yiannikouris F, et al. The renin-angiotensin system: a target of and contributor to dyslipidemias, altered glucose homeostasis, and hypertension of the metabolic syndrome. Am J Physiol Heart Circ Physiol. 2012;302:H1219-30.
Santos SH, Andrade JM, Fernandes LR, et al. Oral Angiotensin (1–7) prevented obesity and hepatic inflammation by inhibition of resistin/TLR4/MAPK/NF-kappaB in rats fed with high-fat diet. Peptides. 2013;46:47–52.
Santos RA, Brosnihan KB, Chappell MC, et al. Converting enzyme activity and angiotensin metabolism in the dog brainstem. Hypertens. 1988;11(2 Pt 2):I153-7. doi: https://doi.org/10.1161/01.hyp.11.2_pt_2.i153.
Santos RA, Oudit GY, Verano-Braga T, et al. The renin-angiotensin system: going beyond the classical paradigms. Am J Physiol Heart Circ Physiol. 2019;316(5):H958-70.
Santos RA, Silva AC, Maric C, et al. Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas Proc Natl Acad Sci USA. 2003;100:8258-63. doi: https://doi.org/10.1073/pnas.1432869100.
Schütten MT, Houben AJ, de Leeuw PW, et al. The Link Between Adipose Tissue Renin-Angiotensin-Aldosterone System Signaling and Obesity-Associated Hypertension. physiology. 2017;32:197-209. https://doi.org/10.1152/physiol.00037.2016
Shiota A, Yamamoto K, Ohishi M, Tatara Y, Ohnishi M, Maekawa Y, et al. Loss of ACE2 accelerates time-dependent glomerular and tubulointerstitial damage in streptozotocin-induced diabetic mice. Hypertens Res. 2010;33:298–307. https://doi.org/10.1038/hr.2009.231.
Tallant EA, Ferrario CM, Gallagher PE. Angiotensin-(1-7) inhibits growth of cardiac myocytes through activation of the mas receptor. Am J Physiol Heart Circ Physiol. 2005;289:H1560-6. doi: https://doi.org/10.1152/ajpheart.00941.
Than A, Leow MK, Chen P. Control of adipogenesis by the autocrine interplays between angiotensin 1-7/Mas receptоr and angiotensin II/AT1 receptor signaling pathways. J Biol Chem. 2013;288:15520-31.
Thatcher SE, Zhang X, Howatt DA, et al. Angiotensin-converting enzyme 2 decreases formation and severity of angiotensin II-induced abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol. 2014;34:2617-23.
Tipnis SR, Hooper NM, Hyde R, et al. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem. 2000;275:33238-43. doi: https://doi.org/10.1074/jbc.M002615200.
Van Twist DJ, Kroon AA, de Leeuw PW. Angiotensin-(1–7) as a strategy in the treatment of hypertension? Curr Opin Nephrol. 2014;23:480-6.
Wang K, Basu R, Poglitsch M, et al. Elevated Angiotensin 1–7/Angiotensin II Ratio Predicts Favorable Outcomes in Patients With Heart Failure. Circulation: Heart Fail. 2020;13(7). https://doi.org/10.1161/CIRCHEARTFAILURE.120.006939.
Wu CH, Mohammadmoradi S, Chen JZ, et al. Renin-angiotensin system and cardiovascular functions. Arterioscler Thromb Vasc Biol. 2018;38(07):e108-16.
Yang HY, Erdös EG, Chiang TS. New enzymatic route for the inactivation of angiotensin. Nature. 1968;218:1224-6. doi:https://doi.org/10.1038/2181224a0.
Zhang Y, Li B, Wang B, et al. Alteration of cardiac ACE2/Mas expression and cardiac remodelling in rats with aortic constriction. Chin J Physiol. 2014;57:335-42.