Heart failure with preserved ejection fraction: main molecular and cellular mechanisms of development
Main Article Content
Abstract
Heart failure with preserved ejection fraction (HFpEF) is characterized by signs and symptoms of heart failure in the presence of a normal left ventricular ejection fraction. HFpEF is a heterogeneous syndrome with diverse etiology and pathophysiological factors. HFpEF is a disease that develops by several pathophysiological mechanisms, although many of them remain unclear due to limited access to human heart tissue. At the heart of the mechanisms of HFpEF pathogenesis are disturbances in the handling of calcium ions in cardiomyocytes and endothelial dysfunction, which occurs as a result of numerous factors. Endothelial defects usually include impaired vasodilation, increased vasoconstriction, arterial stiffness, and atherogenesis. Endothelial dysfunction, the main consequence of which is insufficient NO availability, is associated with adverse events in patients with HFpEF. Compared with HFpEF patients without coronary endothelial dysfunction, patients with impaired endothelial function are characterized by more severe clinical outcomes, especially those associated with type 2 diabetes and obesity.
In the heart tissue of an adult, there are mixed populations of macrophages. The ratio of macrophages of different origins changes with aging and the progression of various CVDs, depending on gender and type of cardiovascular dysfunction. Macrophages play important roles in the development and progression of СН. The role of macrophages in the pathogenesis of hypertension, obesity, diabetes, renal dysfunction, which are risk factors leading to СН, is crucial.
Analysis of human endomyocardial biopsies has shown that HFpEF patients exhibit a gene expression profile distinct from HfrEF patients and normal controls.
The study of these and other mechanisms of the pathogenesis of HFpEF will reveal new promising therapeutic targets for the treatment of heart failure.
Article Details
Keywords:
References
Fopiano KA, Jalnapurkar S, Davila AC, Arora V, Bagi Z. Coronary Microvascular Dysfunction and Heart Failure with Preserved Ejection Fraction – implications for Chronic Inflammatory Mechanisms. Curr Cardiol Rev. 2022;18(2):e310821195986. https://doi.org/10.2174/1573403X17666210831144651.
Borlaug BA. Evaluation and management of heart failure with preserved ejection fraction. Nat Rev Cardiol. 2020;17:559-73. https://doi.org/10.1038/s41569-020-0363-2.
Dhore-Patil A, Thannoun T, Samson R, Le Jemtel TH. Diabetes Mellitus and Heart Failure With Preserved Ejection Fraction: Role of Obesity. Front Physiol. 2022 Feb 15;12:785879. https://doi.org/10.3389/fphys.2021.785879.
Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun, Colvin MM, Deswal A, Drazner MH, Dunlay SM, Evers LR. AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2022;145:e895-e1032. https://doi.org/10.1161/CIR.0000000000001063.
Peana D, Domeier TL. Cardiomyocyte Ca2+ homeostasis as a therapeutic target in heart failure with reduced and preserved ejection fraction. Curr Opin Pharmacol. 2017 Apr;33:17-26. https://doi.org/10.1016/j.coph.2017.03.005.
Xu HX, Cui SM, Zhang YM. Mitochondrial Ca2+ regulation in the etiology of heart failure: physiological and pathophysiological implications. Acta Pharmacol. 2020;41:1301-9. HTTPS://DOI.ORG/10.1038/s41401-020-0476-5
Dobrev D, Wehrens XH. Role of RyR2 phosphorylation in heart failure and arrhythmias: Controversies around ryanodine receptor phosphorylation in cardiac disease. Circ Res. 2014;114:1311-9. https://doi.org/10.1161/CIRCRESAHA.114.300568.
Primessnig U, Schonleitner P, Holl A, Pfeiffer S, Bracic T, Rau T, Kapl M, Stojakovic T, Glasnov T, Leineweber K, Wakula P, Antoons G, Pieske B, Heinzel FR. Novel pathomechanisms of cardiomyocyte dysfunction in a model of heart failure with preserved ejection fraction. Eur J Heart Fail. 2016;18:987-97. https://doi.org/10.1002/ejhf.524.
Ljubojevic S, Radulovic S, Leitinger G, Sedej S, Sacherer M, Holzer M, Winkler C, Pritz E, Mittler T, Schmidt A, Sereinigg M, Wakula P, Zissimopoulos S, Bisping E, Post H, Marsche G, Bossuyt J, Bers DM, Kockskämper J, Pieske B. Early remodeling of perinuclear Ca2+ stores and nucleoplasmic Ca2+ signaling during the development of hypertrophy and heart failure. Circulation. 2014 Jul 15;130(3):244-55. https://doi.org/10.1161/CIRCULATIONAHA.114.008927.
Seo K, Rainer PP, Shalkey Hahn V, Lee DI, Jo SH, Andersen A, Liu T, Xu X, Willette RN, Lepore JJ, Marino JP Jr, Birnbaumer L, Schnackenberg CG, Kass DA. Combined TRPC3 and TRPC6 blockade by selective small-molecule or genetic deletion inhibits pathological cardiac hypertrophy. Proc Natl Acad Sci USA. 2014 Jan 28;111(4):1551-6. https://doi.org/10.1073/pnas.1308963111.
Qin F, Siwik DA, Lancel S, Zhang J, Kuster GM, Luptak I, Wang L, Tong X, Kang YJ, Cohen RA, Colucci WS. Hydrogen peroxide-mediated SERCA cysteine 674 oxidation contributes to impaired cardiac myocyte relaxation in senescent mouse heart. J Am Heart Assoc. 2013 Aug 20;2(4):e000184. https://doi.org/10.1161/JAHA.113.000184.
Sokolova LK, Pushkarov VM, Pushkarov VV, Tronko ND. Mekhanizmy patohenezu aterosklerozu u khvorykh na diabet. Rol NF-κB (ohliad literatury). Problemy endokrynnoi patolohii. [Sokolova LK, Pushkarev VM, Pushkarev VV, Tronko ND. Mechanisms of pathogenesis of atherosclerosis in patients with diabetes. The role of NF-κB (literature review) Problemy endokrynnoyi patolohiyi]. 2017;(2):64-76. https://doi.org/10.21856/j-PEP. 2017.2.10. Ukrainian.
Abudureyimu M, Luo X, Wang X, Sowers JR, Wang W, Ge J, Ren J, Zhang Y. Heart failure with preserved ejection fraction (HFpEF) in type 2 diabetes mellitus: from pathophysiology to therapeutics. J Mol Cell Biol. 2022 Sep 12;14(5):mjac028. https://doi.org/10.1093/jmcb/mjac028.
Sickinghe AА, Korporaal SJA, den Ruijter HM. Estrogen contributions to microvascular dysfunction evolving to heart failure with preserved ejection fraction. Front Endocrinol. 2019;10:442. https://doi.org/10.3389/fendo.2019.00442.
Nakamura M, Sadoshima J. Cardiomyopathy in obesity, insulin resistance and diabetes. 2020 Jul;598(14):2977-93. https://doi.org/10.1113/JP276747.
Mishra S, Kass DA. Cellular and molecular pathobiology of heart failure with preserved ejection fraction. Nat Rev Cardiol. 2021 Jun;18(6):400-23. https://doi.org/10.1038/s41569-020-00480-6.
Förstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012 Apr;33(7):829-37, 837a-837d. https://doi.org/10.1093/eurheartj/ehr304.
Parra-Lucares A, Romero-Hernández E, Villa E, Weitz-Muñoz S, Vizcarra G, Reyes M, Vergara D, Bustamante S, Llancaqueo M, Toro L. New Opportunities in Heart Failure with Preserved Ejection Fraction: From Bench to Bedside and Back. Biomedicines. 2022 Dec 27;11(1):70. https://doi.org/10.3390/biomedicines11010070.
Seferovic PМ, Petrie MC, Filippatos GS. Type 2 diabetes mellitus and heart failure: a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2018;20:853-72. https://doi.org/10.1002/ejhf.1170.
Seferovic PM, Polovina M, Bauersachs J. Heart failure in cardiomyopathies: a position paper from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2019;21:553-76. https://doi.org/10.1002/ejhf.1461.
Del Buono MG, Arena R, Borlaug BA, Carbone S, Canada JM, Kirkman DL, Garten R, Rodriguez-Miguelez P, Guazzi M, Lavie CJ, Abbate A. Exercise intolerance in patients with heart failure: JACC state-of-the-art review. J Am Coll Cardiol. 2019 May 7;73(17):2209-25. https://doi.org/10.1016/j.jacc.2019.01.072.
Virdis A, Colucci R, Bernardini N, Blandizzi C, Taddei S, Masi S. Microvascular endothelial dysfunction in human obesity: role of TNF-alpha. J Clin Endocrinol Metab. 2019;104:191-8. https://doi.org/10.1210/jc.2018-00512.
Samson R, Le Jemtel TH. Therapeutic Stalemate in Heart Failure With Preserved Ejection Fraction. J Am Heart Assoc. 2021 Jun 15;10(12):e021120. https://doi.org/10.1161/JAHA.121.021120.
Lefranc C, Friederich-Persson M, Braud L, Palacios- Ramirez R, Karlsson S, Boujardine N, Motterlini R, Jaisser F, Nguyen Dinh Cat A. MR (mineralocorticoid receptor) induces adipose tissue senescence and mitochondrial dysfunction leading to vascular dysfunction in obesity. Hypertension. 2019;73:458-68. https://doi.org/10.1161/HYPERTENSIONAHA.118.11873.
Heidt T, Courties G, Dutta P, Sager HB, Sebas M, Iwamoto Y. Differential contribution of monocytes to heart macrophages in steady-state and after myocardial infarction. Circ Res. 2014;1152:284-95. https://doi.org/10.1161/circresaha.115.303567.
Bajpai G, Schneider C, Wong N, Bredemeyer A, Hulsmans M, Nahrendorf M. The human heart contains distinct macrophage subsets with divergent origins and regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat Immunol. 2018;1311:1118-28. https://doi.org/10.1038/ni.2419.
Moskalik A, Niderla-Bielińska J, Ratajska A. Multiple roles of cardiac macrophages in heart homeostasis and failure. Heart Fail Rev. 2022 Jul;27(4):1413-30. https://doi.org/10.1007/s10741-021-10156-z.
Hulin A, Anstine LJ, Kim AJ, Potter SJ, DeFalco T, Lincoln J. Macrophage transitions in heart valve development and myxomatous valve disease. Arterioscler Thromb Vasc Biol. 2018;383:636-44. https://doi.org/10.1161/atvbaha.117.310667.
DeBerge M, Shah SJ, Wilsbacher L, Thorp EB. Macrophages in heart failure with reduced versus preserved ejection fraction. 2019 Apr;25(4):328-40. https://doi.org/10.1016/j.molmed.2019.01.002.
Niderla-Bielińska J, Ścieżyńska A, Moskalik A, Jankowska-Steifer E, Bartkowiak K, Bartkowiak M. A comprehensive miRNome analysis of macrophages isolated from db/db mice and selected miRNAs involved in metabolic syndrome-associated cardiac remodeling. Int J Mol Sci. 2021 Feb 23;22(4):2197. https://doi.org/10.3390/ijms22042197.
Hulsmans M, Sager HB, Roh JD, Valero-Munoz M, Houstis NE, Iwamoto Y. Cardiac macrophages promote diastolic dysfunction. J Exp Med. 2018;2152:423-40. https://doi.org/10.1084/jem.20171274.
Loredo-Mendoza ML, Ramirez-Sanchez I, Bustamante-Pozo MM, Ayala M, Navarrete V, Garate-Carrillo A. The role of inflammation in driving left ventricular remodeling in a preHFpEF model. Exp Biol Med. 2018; (Maywood):1535370220912699. https://doi.org/10.1177/1535370220912699.
Franssen C, Chen S, Unger A, Korkmaz HI, De Keulenaer GW, Tschöpe C. Myocardial microvascular inflammatory endothelial activation in heart failure with preserved ejection fraction. JACC Heart Fail. 2016;44:312-24. https://doi.org/10.1016/j.
Warbrick I, Rabkin SW. Hypoxia-inducible factor 1-alpha (HIF-1alpha) as a factor mediating the relationship between obesity and heart failure with preserved ejection fraction. Obes Rev. 2019;205:701-12. https://doi.org/10.1111/obr.12828.
Liu S, Chen J, Shi J, Zhou W, Wang L, Fang W. M1-like macrophage-derived exosomes suppress angiogenesis and exacerbate cardiac dysfunction in a myocardial infarction microenvironment. Basic Res Cardiol. 2020;1152:22. https://doi.org/10.1007/s00395-020-0781-7.
Brakenhielm E, González A, Díez J. Role of Cardiac Lymphatics in Myocardial Edema and Fibrosis: JACC Review Topic of the Week. J Am Coll Cardiol 2020;766:735-44. https://doi.org/10.1016/j.jacc.2020.05.076.
Kuna J, Żuber Z, Chmielewski G, Gromadziński L, Krajewska-Włodarczyk M. Role of Distinct Macrophage Populations in the Development of Heart Failure in Macrophage Activation Syndrome. Int J Mol Sci. 2022 Feb 23;23(5):2433. https://doi.org/10.3390/ijms23052433.
Shen JL, Xie XJ. Insight into the Pro-inflammatory and Profibrotic Role of Macrophage in Heart Failure With Preserved Ejection Fraction. J Cardiovasc Pharmacol. 2020 Sep;76(3):276-85. https://doi.org/10.1097/FJC.0000000000000858.
Schulert GS, Grom AA. Pathogenesis of macrophage activation syndrome and potential for cytokine-directed therapies. Annu Rev Med. 2015;66:145-59. https://doi.org/10.1146/annurev-med-061813-012806.
Murray PJ. Macrophage Polarization. Annu Rev Physiol. 2017 Feb 10;79:541-566. https://doi.org/10.1146/annurev-physiol-022516-034339.
41. Shimizu M, Inoue N, Mizuta M, Nakagishi Y, Yachie A. Characteristic elevation of soluble TNF receptor II: I ratio in macrophage activation syndrome with systemic juvenile idiopathic arthritis. Clin. Exp. Immunol. 2018;191:199-355. https://doi.org/10.1111/cei.13026.
Norelli M, Camisa B, Barbiera G, Falcone L, Purevdorj A, Genua M, Sanvito F, Ponzoni M, Doglioni C, Cristofori P, Traversari C, Bordignon C, Ciceri F, Ostuni R, Bonini C, Casucci M, Bondanza A. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat Med. 2018 Jun;24(6):739-748. https://doi.org/10.1038/s41591-018-0036-4.
Xu XJ, Tang YM, Song H, Yang SL, Xu WQ, Zhao N, Shi SW, Shen HP, Mao JQ, Zhang LY, Pan BH. Diagnostic accuracy of a specific cytokine pattern in hemophagocytic lymphohistiocytosis in children. J Pediatr. 2012 Jun;160(6):984-90.e1. https://doi.org/10.1016/j.jpeds.2011.11.046
Strippoli R, Carvello F, Scianaro R, De Pasquale L, Vivarelli M, Petrini S, Bracci-Laudiero L, De Benedetti F. Amplification of the response to Toll-like receptor ligands by prolonged exposure to interleukin-6 in mice: implication for the pathogenesis of macrophage activation syndrome. Arthritis Rheum. 2012 May;64(5):1680-8. https://doi.org/10.1002/art.3Rozenbaum1996.
Bracaglia C, Prencipe G, De Benedetti F. Macrophage Activation Syndrome: different mechanisms leading to a one clinical syndrome. Pediatr Rheumatol Online J. 2017 Jan 17;15(1):5. https://doi.org/10.1186/s12969-016-0130-4.
Put K, Avau A, Brisse E, Mitera T, Put S, Proost P, Bader-Meunier B, Westhovens R, Van den Eynde BJ, Orabona C, Fallarino F, De Somer L, Tousseyn T, Quartier P, Wouters C, Matthys P. Cytokines in systemic juvenile idiopathic arthritis and haemophagocytic lymphohistiocytosis: tipping the balance between interleukin-18 and interferon-γ. Rheumatology (Oxford). 2015 Aug;54(8):1507-17. https://doi.org/10.1093/rheumatology/keu524.
Hahn VS, Knutsdottir H, Luo X, Bedi K, Margulies KB, Haldar SM, Stolina M, Yin J, Khakoo AY, Vaishnav J, Bader JS, Kass DA, Sharma K. Myocardial gene expression signatures in human heart failure with preserved ejection fraction. Circulation. 2021 Jan 12;143(2):120-34. doi:10.1161/CIRCULATIONAHA.120.050498
Smith AN, Altara R, Amin G, Habeichi NJ, Thomas DG, Jun S, Kaplan A, Booz GW, Zouein FA. Genomic, Proteomic, and Metabolic Comparisons of Small Animal Models of Heart Failure With Preserved Ejection Fraction: A Tale of Mice, Rats, and Cats. J Am Heart Assoc. 2022 Aug 2;11(15):e026071. https://doi.org/10.1161/JAHA.122.026071.
Dutta S, Li D, Wang A, Ishak M, Cook K, Farnham M, Dissanayake H, Cistulli P, Hunyor I, Liu R, Wilcox I, Koay YC, Yang J, Lal S, O'Sullivan JF. Metabolite signatures of heart failure, sleep apnoea, their interaction, and outcomes in the community. ESC Heart Fail. 2021;8:5392– 5402. https://doi.org/10.1002/ehf2.13631
Hage C, Löfgren L, Michopoulos F, Nilsson R, Davidsson P, Kumar C, Ekström M, Eriksson MJ, Lyngå P, Persson B, Wallén H, Gan LM, Persson H, Linde C. Metabolomic profile in HFpEF vs HFrEF patients. J Card Fail. 2020;26:1050-9. https://doi.org/10.1016/j.cardfail.2020.07.010
Pugliese NR, Paneni F, Mazzola M, De Biase N, Del Punta L, Gargani L, Mengozzi A, Virdis A, Nesti L, Taddei S, Flammer A, Borlaug BA, Ruschitzka F, Masi S. Impact of epicardial adipose tissue on cardiovascular haemodynamics, metabolic profile, and prognosis in heart failure. Eur J Heart Fail. 2021 Nov;23(11):1858-71. https://doi.org/10.1002/ejhf.2337.
Sato M, Tsumoto H, Toba A, Soejima Y, Arai T, Harada K, Miura Y, Sawabe M. Proteome analysis demonstrates involvement of endoplasmic reticulum stress response in human myocardium with subclinical left ventricular diastolic dysfunction. Geriatr Gerontol Int. 2021;21:577-83. https://doi.org/10.1111/ggi.14197.
Kresoja KP, Rommel KP, Wachter R, Henger S, Besler C, Klöting N, Schnelle M, Hoffmann A, Büttner P, Ceglarek U, Thiele H, Scholz M, Edelmann F, Blüher M, Lurz P. Proteomics to improve phenotyping in obese patients with heart failure with preserved ejection fraction. Eur J Heart Fail. 2021 Oct;23(10):1633-44. https://doi.org/10.1002/ejhf.2291
Krüger M, Babicz K, von Frieling-Salewsky M, Linke WA. Insulin signaling regulates cardiac titin properties in heart development and diabetic cardiomyopathy. J Mol Cell Cardiol. 2010 May;48(5):910-6. https://doi.org/10.1016/j.yjmcc.2010.02.012.
Meagher P, Adam M, Civitarese R, Bugyei-Twum A, Connelly KA. Heart failure with preserved ejection fraction in diabetes: mechanisms and management. Can J Cardiol. 2018 May;34(5):632-43. doi: 10.1016/j.cjca.2018.02.026.
Ghosh N, Katare R. Molecular mechanism of diabetic cardiomyopathy and modulation of microRNA function by synthetic oligonucleotides. Cardiovasc Diabetol. 2018 Mar 22;17(1):43. https://doi.org/10.1186/s12933-018-0684-1.
Costantino S, Paneni F, Lüscher TF, Cosentino F. MicroRNA profiling unveils hyperglycaemic memory in the diabetic heart. Eur Heart J. 2016 Feb 7;37(6):572-6. https://doi.org/10.1093/eurheartj/ehv599.
Evangelista I, Nuti R, Picchioni T, Dotta F, Palazzuoli A. Molecular Dysfunction and Phenotypic Derangement in Diabetic Cardiomyopathy. Int J Mol Sci. 2019 Jul 2;20(13):3264. https://doi.org/10.3390/ijms20133264.
Li Y, Zhou Q, Pei C, Liu B, Li M, Fang L, Sun Y, Li Y, Meng S. Hyperglycemia and advanced glycation end products regulate miR-126 expression in endothelial progenitor cells. J Vasc Res. 2016;53(1-2):94-104. https://doi.org/10.1159/000448713.
Olivieri F, Spazzafumo L, Bonafè M, Recchioni R, Prattichizzo F, Marcheselli F, Micolucci L, Mensà E, Giuliani A, Santini G, Gobbi M, Lazzarini R, Boemi M, Testa R, Antonicelli R, Procopio AD, Bonfigli AR. MiR-21-5p and miR-126a-3p levels in plasma and circulating angiogenic cells: relationship with type 2 diabetes complications. Oncotarget. 2015;6:35372-82. https://doi.org/10.18632/oncotarget.6164.
Mormile R. Type 2 diabetes and susceptibility to atrial fibrillation: the two facets of downregulation of MiR-126? Cardiovasc Endocrinol Metab. 2018 Sep; 7(3): 68–69. https://doi.org/10.1097/XCE.0000000000000156
Yang HH, Chen Y, Gao CY, Cui ZT, Yao JM. Protective effects of MicroRNA-126 on human cardiac microvascular endothelial cells against hypoxia/reoxygenation-induced injury and inflammatory response by activating PI3K/Akt/eNOS signaling pathway. Cell Physiol Biochem 2017; 42:506 – 518. https://doi.org/10.1159/000477597.
Pushkarev VM, Sokolova L, Zhuravel O, Pushkarev VV, Belchina Yu, Tronko M. Comparison of serum miRNAs expression of diabetic patients with healthy volunteers after type 2 diabetes drugs treatment. 52nd EASD Annual meeting. Munich, 12-16 Sept. 2016. P. 738.
Pushkarev VV, Sokolova LK, Kovzun OI, Vatseba TS, Pushkarev VM, Tronko MD. Vmist mikroRNK-126 u syrovattsi krovi khvorykh na diabet 2-ho typu pry likuvanni deiakymy tsukroznyzhuiuchymy preparatamy. Problemy endokrynnoi patolohii. [The content of microRNA-126 in the blood serum of patients with type 2 diabetes during treatment with some hypoglycemic drugs]. Problemy endokrynnoyi patolohiyi. 2020;(3):81-8. https://doi.org/10.13140/RG.2.2.22841.72802. Ukrainian.
Arcopinto M, Salzano A, Giallauria F, Bossone E, Isgaard J, Marra AM, Bobbio E, Vriz O, Åberg DN, Masarone D, De Paulis A, Saldamarco L, Vigorito C, Formisano P, Niola M, Perticone F, Bonaduce D, Saccàhormone deficiency is associated with worse cardiac function, physical performance, and outcome in chronic heart failure: insights from the T.O.S.CA. GHD study. PLoS One. 2017;12:e0170058. https://doi.org/10.1371/journal.pone.0170058
Arcopinto M, Bobbio E, Bossone E, Perrone-Filardi P, Napoli R, Sacca L, Cittadini A. The GH/IGF-1 axis in chronic heart failure. Endocr Metab Immune Disord Drug Targets. 2013 Mar;13(1):76-91. https://doi.org/10.2174/1871530311313010010.
D'Assante R, Arcopinto M, Rengo G, Salzano A, Walser M, Gambino G, Monti MG, Bencivenga L, Marra AM, Åberg DN, De Vincentiis C, Ballotta A, Bossone E, Isgaard J, Cittadini A. Myocardial expression of somatotropic axis, adrenergic signalling, and calcium handling genes in heart failure with preserved ejection fraction and heart failure with reduced ejection fraction. ESC Heart Fail. 2021 Apr;8(2):1681-6. https://doi.org/10.1002/ehf2.13067.
Faxén UL, Hage C, Andreasson A, Donal E, Daubert JC, Linde C, Brismar K, Lund LH. HFpEF and HFrEF exhibit different phenotypes as assessed by leptin and adiponectin. Int J Cardiol. 2017 Feb 1;228:709-16. https://doi.org/10.1016/j.ijcard.2016.11.194.
D’Assante R, Napoli R, Salzano A, Pozza C, Marra AM, Arcopinto M, Perruolo G, Milano S, Formisano P, Saldamarco L, Cirillo P, Cittadini AHuman heart shifts from IGF-1 production to utilization with chronic heart failure. Endocrine. 2019 Sep;65(3):714-716. https://doi.org/10.1007/s12020-019-01993-y.