Ультразвукова характеристика функціональних змін міокарда при застосуванні кондиційованого середовища мезенхімальних стовбурових клітин на моделі автоімунного міокардиту
##plugins.themes.bootstrap3.article.main##
Анотація
Мета роботи – охарактеризувати вплив кондиційованого середовища мезенхімальних стовбурових клітин (КС-МСК) на функціональний стан серця при експериментальному автоімунному міокардиті (АІМ) за даними ультрасонографічного дослідження серця.
Матеріали і методи. АІМ моделювали шляхом введення щурам кардіотропної антигенної суміші, яка складалась з повного ад’юванта Фрейнда та розчину антигену. Антигенну суміш вводили щурам 4 рази впродовж 14 днів. КС-МСК вводили на 14, 17, 20, 23-й та 26-й дні експерименту. Сонографічне дослідження серця проводили за допомогою ультразвукового ехотомоскопа «Сономед 500» («Полі-Спектр», Україна) на 28-й день експерименту.
Результати. Виявлено, що КС-МСК має виразний кардіопротективний ефект у щурів з АІМ. КС-МСК значно покращує структуру серця, знижує товщину стінок лівого шлуночка, нормалізує об’ємні показники та скоротливу функцію міокарда. Антиаритмічний препарат аміодарон також показує позитивні результати, однак його ефект менш виражений порівняно з КС-МСК. Терапевтичний потенціал КС-МСК у корекції гіпертрофії та порушень скоротливої функції міокарда підтверджується численними статистично значущими змінами, що спостерігалися в усіх досліджуваних групах.
Висновки. Лікування КС-МСК привело до значного зменшення вираженості гіпертрофії міокарда лівого шлуночка, про що свідчило зменшення товщини міжшлуночкової перегородки та задньої стінки лівого шлуночка. Кінцеводіастолічний та кінцевосистолічний об’єми також зменшилися, що супроводжувалось відновленням скоротливої функції серця: показники фракції викиду (75,8 %, р<0,001) та фракції вкорочення (39,2 %, р<0,001) в групі КС-МСК наблизилися до рівня інтактних щурів.
##plugins.themes.bootstrap3.article.details##
Ключові слова:
Посилання
Jahandideh A, Virta J, Li XG, Liljenbäck H, Moisio O, Ponkamo J, Rajala N, Alix M, Lehtonen J, Mäyränpää MI, Salminen TA, Knuuti J, Jalkanen S, Saraste A, Roivainen A. Vascular adhesion protein-1-targeted PET imaging in autoimmune myocarditis. J Nucl Cardiol. 2023 Dec;30(6):2760-72. https://doi.org/10.1007/s12350-023-03371-8.
Hladkykh FV. Immunopathological aspects of the etiopathogenesis of myocarditis. Ukr Cardiol J. 2024;31(1):103–12. https://doi.org/10.31928/2664-4479-2024.1.103112
Ammirati E, Frigerio M, Adler ED, Basso C, Birnie DH, Brambatti M, Friedrich MG, Klingel K, Lehtonen J, Moslehi JJ, Pedrotti P, Rimoldi OE, Schultheiss HP, Tschöpe C, Cooper LT Jr, Camici PG. Management of Acute Myocarditis and Chronic Inflammatory Cardiomyopathy: An Expert Consensus Document. Circ Heart Fail. 2020 Nov;13(11):e007405. https://doi.org/10.1161/CIRCHEARTFAILURE.120.007405.
Eckart RE, Shry EA, Burke AP, McNear JA, Appel DA, Castillo-Rojas LM, Avedissian L, Pearse LA, Potter RN, Tremaine L, Gentlesk PJ, Huffer L, Reich SS, Stevenson WG; Department of Defense Cardiovascular Death Registry Group. Sudden death in young adults: an autopsy-based series of a population undergoing active surveillance. J Am Coll Cardiol. 2011 Sep 13;58(12):1254-61. https://doi.org/10.1016/j.jacc.2011.01.049.
Lampejo T, Durkin SM, Bhatt N, Guttmann O. Acute myocarditis: aetiology, diagnosis and management. Clin Med (Lond). 2021 Sep;21(5):e505-e510. https://doi.org/10.7861/clinmed.2021-0121.
Suresh A, Martens P, Tang WHW. Biomarkers for Myocarditis and Inflammatory Cardiomyopathy. Curr Heart Fail Rep. 2022 Oct;19(5):346-55. https://doi.org/10.1007/s11897-022-00569-8.
Tschöpe C, Ammirati E, Bozkurt B, Caforio ALP, Cooper LT, Felix SB, Hare JM, Heidecker B, Heymans S, Hübner N, Kelle S, Klingel K, Maatz H, Parwani AS, Spillmann F, Starling RC, Tsutsui H, Seferovic P, Van Linthout S. Myocarditis and inflammatory cardiomyopathy: current evidence and future directions. Nat Rev Cardiol. 2021 Mar;18(3):169-93. https://doi.org/10.1038/s41569-020-00435-x.
Miller FW. The increasing prevalence of autoimmunity and autoimmune diseases: an urgent call to action for improved understanding, diagnosis, treatment, and prevention. Curr Opin Immunol. 2023 Feb;80:102266. https://doi.org/10.1016/j.coi.2022.102266.
Lerner A, Jeremias P, Matthias T: The World Incidence and Prevalence of Autoimmune Diseases is Increasing. Intern J Cel Dis. 2016;3:151-5.
Gracia-Ramos AE, Martin-Nares E, Hernández-Molina G. New Onset of Autoimmune Diseases Following COVID-19 Diagnosis. Cells. 2021 Dec 20;10(12):3592. https://doi.org/10.3390/cells10123592.
Gu X, Li Y, Chen K, Wang X, Wang Z, Lian H, Lin Y, Rong X, Chu M, Lin J, Guo X. Exosomes derived from umbilical cord mesenchymal stem cells alleviate viral myocarditis through activating AMPK/mTOR-mediated autophagy flux pathway. J Cell Mol Med. 2020 Jul;24(13):7515-30. https://doi.org/10.1111/jcmm.15378.
Esfahani K, Buhlaiga N, Thébault P, Lapointe R, Johnson NA, Miller WH Jr. Alemtuzumab for Immune-Related Myocarditis Due to PD-1 Therapy. N Engl J Med. 2019 Jun 13;380(24):2375-6. https://doi.org/10.1056/NEJMc1903064.
Hladkykh FV. Mesenchymal stem cells: exosomes and conditioned media as innovative strategies in the treatment of autoimmune diseases. Clin and Prev Med. 2023;6(28):121-30. https://doi.org/10.31612/2616-4868.6.2023.15.
Hladkykh FV. Characteristics of the impact of acellular cryopreserved biological agents on antioxidant-prooxidant homeostasis in heart tissues in a model of autoimmune myocarditis. Health & Education. 2024;2:23-30. https://doi.org/10.32782/health-2024.2.4.
Solursh M, Meier S. A conditioned medium (CM) factor produced by chondrocytes that promotes their own differentiation. Developmental Biology. 1973;30(2):279-89. https://doi.org/10.1016/0012-1606(73)90089-4.
Kim HO, Choi S-M, Kim H-S. Mesenchymal stem cell-derived secretome and microvesicles as a cell-free therapeutics for neurodegenerative disorders. Tissue Engineering and Regenerative Medicine. 2013;10:93-101. DOI: https://doi.org/10.1007/s13770-013-0010-7.
Nesteruk GV, Alabedalkarim NM, Kolot NV, Komaromi NA, Protsenko OS, Lehach YI. Effect of conditioned media from glial cell cultures on the reproductive system of female rats of different ages. Problems of Endocrine Pathology. 2022;79(2):88-96. https://doi.org/10.21856/j-PEP.2022.2.13.
Caroline Evette Mathen. Patent. A61K35/12. Stem cell conditioned media for clinical and cosmetic applications. Application PCT/IN2018/050078. 2018. Publication of WO2018150440A1. https://patents.google.com/patent/WO2018150440A1/
Golubinskaya PA, Sarycheva MV, Dolzhikov AA, Bondarev VP, Stefanova MS, Soldatov VO, Nadezhdin SV, Korokin MV, et al. Application of multipotent mesenchymal stem cell secretome in the treatment of adjuvant arthritis and contact-allergic dermatitis in animal models. Pharmacy & Pharmacology. 2020;8(6):416-25. https://doi.org/10.19163/2307-9266-2020-8-6-416-425.
Globa VY. Application of cryopreserved cell cultures and neurotrophic factors in experimental infravesical obstruction. PhD Dissertation, Kharkiv, 2021. 156 p. Available at: https://nrat.ukrintei.ua/searchdoc/0821U100913/.
Pavlenko HP. Free radical, antioxidant, and hemocoagulation processes are normal in experimental heart pathology and their limitation by a peptide bioregulator. Dissertation abstract. Kharkiv. 1993. 20 р.
Hladkykh FV. Freund’s adjuvant is a classic of vaccine adjuvants and the basis of experimental immunology. J V.N. Karazin Kharkiv National University. Series Medicine. 2024;32(3(50)):414-39. https://doi.org/10.26565/2313-6693-2024-50-10.
Fontes JA, Barin JG, Talor MV, Stickel N, Schaub J, Rose NR, Cihakova D. Complete Freund`s adjuvant induces experimental autoimmune myocarditis by enhancing IL-6 production during initiation of the immune response. Immunity, Inflammation and Disease. 2017;5(2):163-76. https://doi.org/10.1002/iid3.155.
Root-Bernstein R, Fairweather D. Unresolved issues in theories of autoimmune disease using myocarditis as a framework. J Theoretical Biol. 2015;375:101-23. https://doi.org/10.1016/j.jtbi.2014.11.022.
Dzhihaliuk OV, Stepaniuk HI, Zaitchko NV, Kovalenko SI, Shabelnyk KP. Characterization of the effect of 4-[4-oxo-4H-quinazolin-3-yl] benzoic acid (PK-66) on the course of adrenaline-induced myocardial dystrophy in rats based on biochemical studies. Med Clin Chem. 2016;18(4):16-22. https://doi.org/10.11603/mcch.2410-681X.2016.v0.i4.7249.
Chyzh MO, Manchenko AO, Trofimova AV, Belochkina IV. Ultrasound assessment of heart remodelling affected by therapeutic hypothermia and MSC on myocardial infarction model. Ukrainian journal of radiology and oncology. 2020;3(28):222-40. https://doi.org/10.46879/ukroj.3.2020.222-240.
Chyzh MO, Belochkina IV, Globa VYu, Sleta IV, Mikhailova IP, Hladkykh FV. Ultrasound examination of rat hearts after experimental epinephrine-induced damage and the application of heart xenoextract. The Journal of V.N. Karazin Kharkiv National University. Series Medicine. 2024;32(2(49)):185-97. https://doi.org/10.26565/2313-6693-2024-49-06.
Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I, Reichek N. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol. 1986;57(6):450-8. https://doi.org/10.1016/0002-9149(86)90771-x.
Jin QH, Kim HK, Na JY, Jin C, Seon JK. Anti-inflammatory effects of mesenchymal stem cell-conditioned media inhibited macrophages activation in vitro. Sci Rep. 2022 Mar 19;12(1):4754. https://doi.org/10.1038/s41598-022-08398-4.
Takafuji Y, Hori M, Mizuno T, Harada-Shiba M. Humoral factors secreted from adipose tissue-derived mesenchymal stem cells ameliorate atherosclerosis in Ldlr-/- mice. Cardiovasc Res. 2019 May 1;115(6):1041-51. https://doi.org/10.1093/cvr/cvy271.