Vascular calcification: its meaning in pathogenesis, diagnosis, clinical course and prognosis of atherosclerosis and ischemic heart disease outcome
Main Article Content
Abstract
In the work we analyzed results of the contemporary clinical and fundamental research on the problem of subclinical atherosclerosis diagnosis, predicting of its clinical course and earlier definition of the cardiac endpoints. The results of this analysis allow to conclude that silent atherosclerotic vascular damage is present in the significant part of the middle age population in absence of the traditional cardiovascular risk factors. The vascular calcification is one of the most important and prevalent mechanisms of atherosclerosis, the earliest and significant sign of its presence. Moreover, atherosclerosis is a generalized process. Simultaneous visualization of vessels in different vascular regions allows to improve significantly its diagnostic accuracy, especially in combination with defining existence and severity of vascular calcification. Mechanisms of atherosclerosis determined so far may be a target for medications slowing the progression of atherosclerosis and preventing clinical endpoints.
Article Details
Keywords:
References
Abifadel M., Rabès J.P., Boileau C., Varret M. After the LDL receptor and apolipoprotein B, autosomal dominant hypercholesterolemia reveals its third protagonist: PCSK9 // Ann. Endocrinol.– 2007.– Vol. 68.– P. 138–146.
Adler N., Singh-Manoux A., Schwartz J. et al. Social status and health: A comparison of British civil servants in Whitehall-II with European- and African-Americans in CARDIA // Social Science Medicine.– 2008.– Vol. 66.– P. 1034–1045.
Aikawa E., Nahrendorf M., Figueiredo J.L. et al. Osteogenesis associates with inflammation in early-stage atherosclerosis
evaluated by molecular imaging in vivo // Circulation.– 2007.– Vol. 16.– P. 2841–2850.
Alexopoulos N., Raggi P. Calcification in atherosclerosis // Nature Rev.– 2009.– Vol. 6.– P. 681–688.
Arad Y., Goodman K.J., Roth M. et al. Coronary calcification, coronary disease risk factors, C-reactive protein, and atherosclerotic cardiovascular disease events: the St. Francis Heart Study // JACC.– 2005.– Vol. 46.– P. 158–165.
Baber U., Mehran R., Sartori S. et al. Prevalence, impact and predictive value of detecting subclinical coronary and carotid atherosclerosis in asymptomatic adults: the BioImage Study // JAСC.– 2015.– Vol. 65.– P. 1065–1074.
Belcaro G., Nicolaides A.N., Ramaswami G. et al. Carotid and femoral ultrasound morphology screening and cardiovascular events in low risk subjects: a 10-year follow-up study (the CAFES-CAVE study(1) // Atherosclerosis.– 2001.– Vol. 156.– P. 379–387.
Bennett BJ, Scatena M, Kirk EA et al. Osteoprotegerin inactivation accelerates advanced atherosclerotic lesion progression and calcification in older ApoE/mice // ATVB.– 2006.– Vol. 26.– P. 2117–2124.
Bowman M.A.H, Gawdzik J., Bukhari U. et al. S100A12 in Vascular Smooth Muscle Accelerates Vascular Calcification in Apolipoprotein E–Null Mice by Activating an Osteogenic Gene Regulatory Program // ATBV.– 2011.– Vol. 31.– P. 337–344.
Сalcagno C., Mulder W.J.M., Nahrendorf M., Fayad Z.A. Systems Biology and Noninvasive Imaging of Atherosclerosis // NMR BIOMED.– 2015.– Vol. 28.– P. 1304–1314.
Chen Z., Croce K., Sakuma M. Platelet expression profiling and clinical validation of myeloid-related protein-14 as a novel determinant of cardiovascular events // Circulation.– 2006.– Vol. 113.– P. 2278–2284.
Cohen M.M. The new bone biology: pathologic, molecular, and clinical correlates // Am. J. Med. Genet.– 2006.– Vol. 140.– P. 2646–2706.
Сostet P., Carriou B., Lambert G. et al. Hepatic expression PCSK9 is regulated by nutritional status via insulin and sterol regulatory element-binding protein 1c // J. Biol. Chem.– 2008.– Vol. 281.– P. 6211–6218.
Derwall M., Malhotra R., Lai C.S. еt al. Inhibition of Bone Morphogenetic Protein Signaling Reduces Vascular Calcification and Atherosclerosis // ATVB.– 2012.– Vol. 32.– P. 613–622.
Ding H.T., Wang C.G., Zhang T.L., Wang K. Fibronectin enhances in vitro vascular calcification by promoting osteoblastic differentiation of vascular smooth muscle cells via ERK pathway // J. Cell. Biochem.– 2006.– Vol. 99.– P. 1343–1352.
Döring Y., Noels H., Weber C. The Use of High-Throughput Technologies to Investigate Vascular Inflammation and Atherosclerosis // ATVB.– 2001.– Vol. 32.– P. 182–195.
Erbel R., Lehmann N., Möhlenkamp S. et al. Subclinical coronary atherosclerosis predicts cardiovascular risk in different stages of hypertension. Result of the Heinz Nixdorf Recall Study // Hypertens.– 2012.– Vol. 59.– P. 44–53.
Fantus D., Awan Z., Seidah N.G., Genest J. Aortic calcification: Novel insights from familial hypercholesterolemia and potential role for the low-density lipoprotein receptor // Atherosclerosis.– 2013.– Vol. 226.– P. 9–15.
Fernández-Friera L., Peñalvo J.L., Fernández-Ortiz A. et al. Prevalence, Vascular Distribution, and Multiterritorial Extent of Subclinical Atherosclerosis in a Middle-Aged Cohort. The PESA (Progression of Early Subclinical Atherosclerosis) Study // Circulation.– 2015.– Vol. 131.– P. 2104–2113.
Fujinoa T.H., Asabab M.J., Kang Y. et al. Low-density lipoprotein receptor-related protein 5 (LRP5) is essential for normal cholesterol metabolism and glucose-induced insulin secretion // PNAS.– 2003.– Vol. 100.– Р. 229–234.
Gibson A.O., Blaha M.J., Arnan M.K. et al. Coronary artery calcium and incident cerebrovascular events in an asymptomatic cohort: the MESA study // JACC: Cardiovasc. Imaging.– 2014.– Vol. 7.– P. 1108–1115.
Grossman C., Shemesh J., Dovrish Z. et al. Coronary Artery Calcification Is Associated With the Development of Hypertension // Am. J. Hypertens.– 2013.– Vol. 26.– P. 13–19.
Hamirani Y.S., Pandey S., Rivera J.J. et al. Markers of inflammation and coronary artery calcification: A systematic review // Atherosclerosis.– 2008.– Vol. 17.– Р. 1–7.
Hecht H.S. Coronary Artery Calcium Scanning. Past, Present, and Future // JACC: Cardiovascular. Imaging.– 2015.– Vol. 8.– P. 579–596.
Iwakiri T., Yano Y., Sato Y. et al. Usefulness of carotid intima-media thickness measurement as an indicator of generalized atherosclerosis: Findings from autopsy analysis // Atherosclerosis.– 2012.– Vol. 225.– P. 359–362.
Johnson R.C., Leopold J.A., Loscalzo J. Vascular calcification: pathobiological mechanisms and clinical implications // Circ. Res.– 2006.– Vol. 99.– P. 1044–1059.
Lambert G. Unravelling the functional significance of PCSK9 // Curr. Opin. Lipidol.– 2007.– Vol. 8.– P. 304–309.
Lewis J.R., Schousboe J.T., Lim W.H. et al. Abdominal Aortic Calcification Identified on Lateral Spine Images From Bone Densitometers Are a Marker of Generalized Atherosclerosis in Elderly Women // ATVB.– 2016.– Vol. 36.– P. 166–173.
Mahabadi A.A., Möhlenkamp S., Moebus S. et al.; Heinz Nixdorf Investigator Group. The Heinz Nixdorf Recall study and its potential impact on the adoption of atherosclerosis imaging in European primary prevention guidelines // Curr. Atheroscler. Rep.– 2011.– Vol. 13.– P. 367–372.
Martin S.S., Blaha M.J., Blankstein R. et al. Dyslipidemia, coronary artery calcium, and incident atherosclerotic cardiovascular disease: implications for statin therapy from the Multi-Ethnic Study of Atherosclerosis // Circulation.– 2014.– Vol. 129.– P. 77–86.
Mayr M., Zampetaki A., Wilen P. et al. MicroRNAs within the continuum of postgenomics biomarkers discovery // ATVB.– 2013.– Vol. 33.– P. 206–214.
Mori Y., Kosaki A., Kishimoto N. et al. Increased plasma S100A12 (EN-RAGE) levels in hemodialysis patients with atherosclerosis // Am. J. Nephrol.– 2009.– Vol. 29.– P. 18–24.
Muteliefu G., Enomoto A., Jiang P. et al. Indoxyl sulphate induces oxidative stress and the expression of osteoblast-specific proteins in vascular smooth muscle cells // Nephrol. Dial. Transplant.– 2009.– Vol. 24.– P. 2051–2058.
Nadra I., Mason J.C., Philippidis P. et al. Proinflammatory activation of macrophages by basic calcium phosphate crystals via protein kinase C and MAP kinase pathways: a vicious cycle of inflammation and arterial calcification? // Circ. Res.– 2005.– Vol. 96.– P. 1248–1256.
Naoumova R.P, Tosi I., Patel D. et al. Severe hypercholesterolemia in four British families with the D374Y mutation in the PCSK9 gene: long-term follow-up and treatment response // ATVB.– 2005.– Vol. 25.– P. 2654–2660.
Nonin S., Iwata S., Sugioka K. et al. Plaque Surface Irregularity and Calcification Length Within Carotid Plaque Predict Secondary Events in Patients With Coronary Artery Disease // Circulation.– 2016.– Vol. 34.– Р. 12796.
Oesterle A., Bowman M.A.H. S100A12 and the S100/Calgranulins. Emerging Biomarkers for Atherosclerosis and Possibly Therapeutic Targets // ATVB.– 2015.– Vol. 35.– P. 2496–2507.
Patel J., Rifai M.Al., Ayers C. et al. Inflammation and Coronary Artery Calcification in South Asians: The Mediators of Atherosclerosis in South Asians Living in America (MASALA) Study // Circulation.– 2016.– Vol. 134.– Р. 17316.
Pencina M.J., D’Agostino R.B., Larson M.G. et al. Predicting the 30-year risk of cardiovascular disease: the Framingham Heart Study // Circulation.– 2009.– Vol. 119.– P. 3078–3084.
Polonsky T.S., McClelland R.L., Jorgensen N.W. et al. Coronary artery calcium score and risk classification for coronary heart disease prediction // JAMA.– 2010.– Vol. 303.– Р. 1610–1616.
Quian Y.W., Schmidt R.J., Zbang Y. et al. Secreted PCSK9 downregulates low density lipoprotein receptor through receptor-mediated endocytosis // J. Lipid. Res.– 2007.– Vol. 48.– P. 1488–1498.
Rutter M.K., Massaro J.M., Hoffmann U. et al. Fasting glucose, obesity, and coronary artery calcification in community-based people without diabetes // Diabetes Care.– 2012.– Vol. 35.– P. 1944–1950.
Santos R.D., Rumberger J.A., Budoff M.J. et al. Thoracic aorta calcification detected by electron beam tomography predicts all-cause mortality // Atherosclerosis.–2010.– Vol. 209.– P. 131–135.
Scatena M., Liaw L., Giachelli C.M. Osteopontin. A Multifunctional Molecule Regulating Chronic Inflammation and Vascular Disease // ATVB.– 2007.– Vol. 27.– P. 2302–2309.
Shao J-S., Cheng S-L., Sadhu J., Towler D.A. Inflammation and the Osteogenic Regulation of Vascular Calcification. A Review and Perspective // Hypertens.– 2010.– Vol. 55.– P. 579–592.
Terekeci H.M., Senol M.G., Top C. et al. Plasma osteoprotegerin concentrations in type 2 diabetic patients and its association with neuropathy // Exp. Clin. Endocrinol. Diabetes.– 2009.– Vol. 117.– P. 119–123.
Tintut Y., Morony S., Demer L.L. Hyperlipidemia promotes osteoclastic potential of bone marrow cells ex vivo// ATVB.– 2004.– Vol. 24.– Р. e6–е10.
Watanabe M., Hayashi F., Tokue M. et al. A Higher Levels of PCSK9 is Associated With Coronary Spotty Calcification in Patients With Acute Coronary Syndromes // Circulation.– 2016.– Vol. 34.– Р. 20427.
Yao Y., Bennett B.J., Wang X. et al. Inhibition of bone morphogenetic proteins protects against atherosclerosis and vascular calcification // Circ. Res.– 2010.– Vol. 107.– Р. 485–494.
Zavodni A.E., Wasserman B.A., McClelland R.L. et al. Carotid artery plaque morphology and composition in relation to incident cardiovascular events: the Multi-Ethnic Study of Atherosclerosis (MESA) // Radiology.– 2014.– Vol. 271.– P. 381–389.