Coсудистая кальцификация: значимость в патогенезе, диагностике, клиническом течении и прогнозе исходов атеросклероза и ишемической болезни сердца
##plugins.themes.bootstrap3.article.main##
Анотація
В работе проведен анализ результатов современных клинических и фундаментальных исследований по проблеме диагностики доклинического атеросклероза, прогнозированию его течения и раннему определению риска развития конечных кардиальных точек. Результаты анализа позволяют сделать заключение, что в значительной части популяции среднего возраста существует бессимптомная доклиническая форма атеросклеротического сосудистого поражения в отсутствие традиционных факторов сердечно-сосудистого риска. Показано, что кальцификация сосудистой стенки относится к числу важнейших наиболее распространенных патогенетических механизмов атеросклероза, наиболее ранних и достоверных его признаков. Помимо этого, атеросклероз является генерализованным процессом, и поэтому одновременная визуализация сосудов в ряде областей позволяет значительно повысить точность его диагностики и определения прогноза, особенно в сочетании с учетом наличия и выраженности сосудистой кальцификации. Установленные в настоящее время механизмы кальцификации могут являться мишенью для фармакологических воздействий, что позволит в ближайшее время оказать существенное влияние на характер прогрессирования атеросклероза и угрозу развития его тяжелых клинических проявлений.
##plugins.themes.bootstrap3.article.details##
Ключові слова:
Посилання
Abifadel M., Rabès J.P., Boileau C., Varret M. After the LDL receptor and apolipoprotein B, autosomal dominant hypercholesterolemia reveals its third protagonist: PCSK9 // Ann. Endocrinol.– 2007.– Vol. 68.– P. 138–146.
Adler N., Singh-Manoux A., Schwartz J. et al. Social status and health: A comparison of British civil servants in Whitehall-II with European- and African-Americans in CARDIA // Social Science Medicine.– 2008.– Vol. 66.– P. 1034–1045.
Aikawa E., Nahrendorf M., Figueiredo J.L. et al. Osteogenesis associates with inflammation in early-stage atherosclerosis
evaluated by molecular imaging in vivo // Circulation.– 2007.– Vol. 16.– P. 2841–2850.
Alexopoulos N., Raggi P. Calcification in atherosclerosis // Nature Rev.– 2009.– Vol. 6.– P. 681–688.
Arad Y., Goodman K.J., Roth M. et al. Coronary calcification, coronary disease risk factors, C-reactive protein, and atherosclerotic cardiovascular disease events: the St. Francis Heart Study // JACC.– 2005.– Vol. 46.– P. 158–165.
Baber U., Mehran R., Sartori S. et al. Prevalence, impact and predictive value of detecting subclinical coronary and carotid atherosclerosis in asymptomatic adults: the BioImage Study // JAСC.– 2015.– Vol. 65.– P. 1065–1074.
Belcaro G., Nicolaides A.N., Ramaswami G. et al. Carotid and femoral ultrasound morphology screening and cardiovascular events in low risk subjects: a 10-year follow-up study (the CAFES-CAVE study(1) // Atherosclerosis.– 2001.– Vol. 156.– P. 379–387.
Bennett BJ, Scatena M, Kirk EA et al. Osteoprotegerin inactivation accelerates advanced atherosclerotic lesion progression and calcification in older ApoE/mice // ATVB.– 2006.– Vol. 26.– P. 2117–2124.
Bowman M.A.H, Gawdzik J., Bukhari U. et al. S100A12 in Vascular Smooth Muscle Accelerates Vascular Calcification in Apolipoprotein E–Null Mice by Activating an Osteogenic Gene Regulatory Program // ATBV.– 2011.– Vol. 31.– P. 337–344.
Сalcagno C., Mulder W.J.M., Nahrendorf M., Fayad Z.A. Systems Biology and Noninvasive Imaging of Atherosclerosis // NMR BIOMED.– 2015.– Vol. 28.– P. 1304–1314.
Chen Z., Croce K., Sakuma M. Platelet expression profiling and clinical validation of myeloid-related protein-14 as a novel determinant of cardiovascular events // Circulation.– 2006.– Vol. 113.– P. 2278–2284.
Cohen M.M. The new bone biology: pathologic, molecular, and clinical correlates // Am. J. Med. Genet.– 2006.– Vol. 140.– P. 2646–2706.
Сostet P., Carriou B., Lambert G. et al. Hepatic expression PCSK9 is regulated by nutritional status via insulin and sterol regulatory element-binding protein 1c // J. Biol. Chem.– 2008.– Vol. 281.– P. 6211–6218.
Derwall M., Malhotra R., Lai C.S. еt al. Inhibition of Bone Morphogenetic Protein Signaling Reduces Vascular Calcification and Atherosclerosis // ATVB.– 2012.– Vol. 32.– P. 613–622.
Ding H.T., Wang C.G., Zhang T.L., Wang K. Fibronectin enhances in vitro vascular calcification by promoting osteoblastic differentiation of vascular smooth muscle cells via ERK pathway // J. Cell. Biochem.– 2006.– Vol. 99.– P. 1343–1352.
Döring Y., Noels H., Weber C. The Use of High-Throughput Technologies to Investigate Vascular Inflammation and Atherosclerosis // ATVB.– 2001.– Vol. 32.– P. 182–195.
Erbel R., Lehmann N., Möhlenkamp S. et al. Subclinical coronary atherosclerosis predicts cardiovascular risk in different stages of hypertension. Result of the Heinz Nixdorf Recall Study // Hypertens.– 2012.– Vol. 59.– P. 44–53.
Fantus D., Awan Z., Seidah N.G., Genest J. Aortic calcification: Novel insights from familial hypercholesterolemia and potential role for the low-density lipoprotein receptor // Atherosclerosis.– 2013.– Vol. 226.– P. 9–15.
Fernández-Friera L., Peñalvo J.L., Fernández-Ortiz A. et al. Prevalence, Vascular Distribution, and Multiterritorial Extent of Subclinical Atherosclerosis in a Middle-Aged Cohort. The PESA (Progression of Early Subclinical Atherosclerosis) Study // Circulation.– 2015.– Vol. 131.– P. 2104–2113.
Fujinoa T.H., Asabab M.J., Kang Y. et al. Low-density lipoprotein receptor-related protein 5 (LRP5) is essential for normal cholesterol metabolism and glucose-induced insulin secretion // PNAS.– 2003.– Vol. 100.– Р. 229–234.
Gibson A.O., Blaha M.J., Arnan M.K. et al. Coronary artery calcium and incident cerebrovascular events in an asymptomatic cohort: the MESA study // JACC: Cardiovasc. Imaging.– 2014.– Vol. 7.– P. 1108–1115.
Grossman C., Shemesh J., Dovrish Z. et al. Coronary Artery Calcification Is Associated With the Development of Hypertension // Am. J. Hypertens.– 2013.– Vol. 26.– P. 13–19.
Hamirani Y.S., Pandey S., Rivera J.J. et al. Markers of inflammation and coronary artery calcification: A systematic review // Atherosclerosis.– 2008.– Vol. 17.– Р. 1–7.
Hecht H.S. Coronary Artery Calcium Scanning. Past, Present, and Future // JACC: Cardiovascular. Imaging.– 2015.– Vol. 8.– P. 579–596.
Iwakiri T., Yano Y., Sato Y. et al. Usefulness of carotid intima-media thickness measurement as an indicator of generalized atherosclerosis: Findings from autopsy analysis // Atherosclerosis.– 2012.– Vol. 225.– P. 359–362.
Johnson R.C., Leopold J.A., Loscalzo J. Vascular calcification: pathobiological mechanisms and clinical implications // Circ. Res.– 2006.– Vol. 99.– P. 1044–1059.
Lambert G. Unravelling the functional significance of PCSK9 // Curr. Opin. Lipidol.– 2007.– Vol. 8.– P. 304–309.
Lewis J.R., Schousboe J.T., Lim W.H. et al. Abdominal Aortic Calcification Identified on Lateral Spine Images From Bone Densitometers Are a Marker of Generalized Atherosclerosis in Elderly Women // ATVB.– 2016.– Vol. 36.– P. 166–173.
Mahabadi A.A., Möhlenkamp S., Moebus S. et al.; Heinz Nixdorf Investigator Group. The Heinz Nixdorf Recall study and its potential impact on the adoption of atherosclerosis imaging in European primary prevention guidelines // Curr. Atheroscler. Rep.– 2011.– Vol. 13.– P. 367–372.
Martin S.S., Blaha M.J., Blankstein R. et al. Dyslipidemia, coronary artery calcium, and incident atherosclerotic cardiovascular disease: implications for statin therapy from the Multi-Ethnic Study of Atherosclerosis // Circulation.– 2014.– Vol. 129.– P. 77–86.
Mayr M., Zampetaki A., Wilen P. et al. MicroRNAs within the continuum of postgenomics biomarkers discovery // ATVB.– 2013.– Vol. 33.– P. 206–214.
Mori Y., Kosaki A., Kishimoto N. et al. Increased plasma S100A12 (EN-RAGE) levels in hemodialysis patients with atherosclerosis // Am. J. Nephrol.– 2009.– Vol. 29.– P. 18–24.
Muteliefu G., Enomoto A., Jiang P. et al. Indoxyl sulphate induces oxidative stress and the expression of osteoblast-specific proteins in vascular smooth muscle cells // Nephrol. Dial. Transplant.– 2009.– Vol. 24.– P. 2051–2058.
Nadra I., Mason J.C., Philippidis P. et al. Proinflammatory activation of macrophages by basic calcium phosphate crystals via protein kinase C and MAP kinase pathways: a vicious cycle of inflammation and arterial calcification? // Circ. Res.– 2005.– Vol. 96.– P. 1248–1256.
Naoumova R.P, Tosi I., Patel D. et al. Severe hypercholesterolemia in four British families with the D374Y mutation in the PCSK9 gene: long-term follow-up and treatment response // ATVB.– 2005.– Vol. 25.– P. 2654–2660.
Nonin S., Iwata S., Sugioka K. et al. Plaque Surface Irregularity and Calcification Length Within Carotid Plaque Predict Secondary Events in Patients With Coronary Artery Disease // Circulation.– 2016.– Vol. 34.– Р. 12796.
Oesterle A., Bowman M.A.H. S100A12 and the S100/Calgranulins. Emerging Biomarkers for Atherosclerosis and Possibly Therapeutic Targets // ATVB.– 2015.– Vol. 35.– P. 2496–2507.
Patel J., Rifai M.Al., Ayers C. et al. Inflammation and Coronary Artery Calcification in South Asians: The Mediators of Atherosclerosis in South Asians Living in America (MASALA) Study // Circulation.– 2016.– Vol. 134.– Р. 17316.
Pencina M.J., D’Agostino R.B., Larson M.G. et al. Predicting the 30-year risk of cardiovascular disease: the Framingham Heart Study // Circulation.– 2009.– Vol. 119.– P. 3078–3084.
Polonsky T.S., McClelland R.L., Jorgensen N.W. et al. Coronary artery calcium score and risk classification for coronary heart disease prediction // JAMA.– 2010.– Vol. 303.– Р. 1610–1616.
Quian Y.W., Schmidt R.J., Zbang Y. et al. Secreted PCSK9 downregulates low density lipoprotein receptor through receptor-mediated endocytosis // J. Lipid. Res.– 2007.– Vol. 48.– P. 1488–1498.
Rutter M.K., Massaro J.M., Hoffmann U. et al. Fasting glucose, obesity, and coronary artery calcification in community-based people without diabetes // Diabetes Care.– 2012.– Vol. 35.– P. 1944–1950.
Santos R.D., Rumberger J.A., Budoff M.J. et al. Thoracic aorta calcification detected by electron beam tomography predicts all-cause mortality // Atherosclerosis.–2010.– Vol. 209.– P. 131–135.
Scatena M., Liaw L., Giachelli C.M. Osteopontin. A Multifunctional Molecule Regulating Chronic Inflammation and Vascular Disease // ATVB.– 2007.– Vol. 27.– P. 2302–2309.
Shao J-S., Cheng S-L., Sadhu J., Towler D.A. Inflammation and the Osteogenic Regulation of Vascular Calcification. A Review and Perspective // Hypertens.– 2010.– Vol. 55.– P. 579–592.
Terekeci H.M., Senol M.G., Top C. et al. Plasma osteoprotegerin concentrations in type 2 diabetic patients and its association with neuropathy // Exp. Clin. Endocrinol. Diabetes.– 2009.– Vol. 117.– P. 119–123.
Tintut Y., Morony S., Demer L.L. Hyperlipidemia promotes osteoclastic potential of bone marrow cells ex vivo// ATVB.– 2004.– Vol. 24.– Р. e6–е10.
Watanabe M., Hayashi F., Tokue M. et al. A Higher Levels of PCSK9 is Associated With Coronary Spotty Calcification in Patients With Acute Coronary Syndromes // Circulation.– 2016.– Vol. 34.– Р. 20427.
Yao Y., Bennett B.J., Wang X. et al. Inhibition of bone morphogenetic proteins protects against atherosclerosis and vascular calcification // Circ. Res.– 2010.– Vol. 107.– Р. 485–494.
Zavodni A.E., Wasserman B.A., McClelland R.L. et al. Carotid artery plaque morphology and composition in relation to incident cardiovascular events: the Multi-Ethnic Study of Atherosclerosis (MESA) // Radiology.– 2014.– Vol. 271.– P. 381–389.