Estimation of myocardial work – a new concept of non-invasive left ventricular systolic function assessment

Main Article Content

M.Yu. Kolesnyk

Abstract

Assessment of left ventricular (LV) systolic function is a mandatory component of cardiovascular diseases diagnostics. In clinical practice, the main parameters are the ejection fraction and LV global longitudinal strain. Both parameters have a number of limitations, including dependence on afterload. This review describes a new technique for non-invasive assessment of global and segmental myocardial contractility based on the calculation of myocardial work by analyzing pressure-strain curves. The main advantage of the technique is the ability to take into account the afterload conditions by the traditional measurement of blood pressure on the brachial artery. The characteristics of the key parameters of the methodology (global work index, global constructive work, global effective and wasted work) as well as their normative values are presented. The stages of the analysis and the limitations of the method are described separately. The results of the main pilot studies of myocardial work parameters in various cardiovascular diseases are presented. Possibilities of the technique for characterizing LV segmental function in left bundle branch block, selection of patients for cardiac resynchronization therapy with subsequent response assessment are presented. The diagnostic and prognostic value of the parameters of myocardial work in arterial hypertension, acute and chronic forms of ischemic heart disease, hypertrophic and dilated cardiomyopathy, chronic heart failure are analyzed. The possibilities of the technique in assessing the effectiveness of therapy in patients with heart failure are described. Potential advantages of the parameters of myocardial work over other markers of LV systolic function, such as ejection fraction and global longitudinal strain, have been determined. The review is illustrated with clinical examples of the use of the technique for various cardiovascular diseases from our own practice.

Article Details

Keywords:

myocardial work, contractility, systolic function, left ventricular

References

Колесник М.Ю. Сучасні підходи до неінвазивної діагностики диссинхронії міокарда // Кардіологія та кардіохірургія: безперервний професійний розвиток.– 2019.– № 2.– С. 53–68. https://doi.org/10.30702/ccs.201905.02.0045367.

Фолков Б., Нил Э. Кровообращение.– М.: Медицина, 1976.– 463 с.

Шмидт Р., Тевс Г. Физиология человека. В 3-х томах, Т. 2. Пер. с англ.– М.: Мир, 1996.– 313 с.

Aalen J., Storsten P., Remme E.W. et al. Afterload hypersensitivity in patients with left bundle branch block // JACC Cardiovasc. Imaging.– 2019.– Vol. 12 (6).– P. 967–977. doi: https://doi.org/10.1016/j.jcmg.2017.11.025.

Boe E., Russell K., Eek C. et al. Non-invasive myocardial work index identifies acute coronary occlusion in patients with non-ST-segment elevation-acute coronary syndrome // Eur. Heart J. Cardiovasc. Imaging.– 2015.– Vol. 16 (11).– P. 1247–1255. doi: https://doi.org/10.1093/ehjci/jev078.

Borrie A., Goggin C., Ershad S. et al. Noninvasive myocardial work index: characterizing the normal and ischemic response to exercise // J. Am. Soc. Echocardiogr.– 2020.– Vol. 33 (10).– P. 1191–1200. doi: https://doi.org/10.1016/j.echo.2020.05.003.

Chan J., Edwards N.F.A., Khandheria B.K. et al. A new approach to assess myocardial work by non-invasive left ventricular pressure – strain relations in hypertension and dilated cardiomyopathy // Eur. Heart J. Cardiovasc. Imaging.– 2018.– Vol. 20 (1).– P. 31–39. doi: https://doi.org/10.1093/ehjci/jey131.

Duchenne J., Aalen J. M., Cvijic M. et al. Acute re-distribution of regional left ventricular work by cardiac resynchronization therapy determines long-term remodeling // Eur. Heart J. Cardiovasc. Imaging.– 2020.– Vol. 21 (6).– P. 619–628. doi: https://doi.org/10.1093/ehjci/jeaa003.

Edwards N.F., Scalia G.M., Shiino K. et al. Global myocardial work is superior to global longitudinal strain to predict significant coronary artery disease in patients with normal left ventricular function and wall motion // J. Am. Soc. Echocardiogr.– 2019.– Vol. 32 (8).– P. 947–957. doi: https://doi.org/10.1016/j.echo.2019.02.014.

Forrester J.S., Tyberg J.V., Wyatt H.L. et al. Pressure-length loop: a new method for simultaneous measurement of segmental and total cardiac function // J. Applied Physiol.– 1974.– Vol. 37 (5).– P. 771–775. doi: https://doi.org/10.1152/jappl.1974.37.5.771.

Bouali Y., Donal E., Gallard A. et al. Prognostic usefulness of myocardial work in patients with heart failure and reduced ejection fraction treated by sacubitril/valsartan // Am. J. Cardiol.– 2020.– Vol. 125 (12).– P. 1856–1862. doi: https://doi.org/10.1016/j.amjcard.2020.03.031.

Galli E., John‐Matthwes B., Rousseau C. et al. Echocardiographic reference ranges for myocardial work in healthy subjects: A preliminary study // Echocardiography.– 2019.– Vol. 36 (10).– P. 1814–1824. doi: https://doi.org/10.1111/echo.14494.

Galli E., Leclercq C., Hubert A. et al. Role of myocardial constructive work in the identification of responders to CRT // Eur. Heart J. Cardiovasc. Imaging.– 2017.– Vol. 19 (9).– P. 1010–1018. doi: https://doi.org/10.1093/ehjci/jex191.

Galli E., Vitel E., Schnell F. et al. Myocardial constructive work is impaired in hypertrophic cardiomyopathy and predicts left ventricular fibrosis // Echocardiography.– 2018.– Vol. 36 (1).– P. 74–82. doi: https://doi.org/10.1111/echo.14210.

Gonçalves A.V., Galrinho A., Pereira-Da-Silva T. et al. Myocardial work improvement after sacubitril–valsartan therapy // J. Cardiovasc. Med.– 2020.– Vol. 21 (3).– P. 223–230. doi: 10.2459/jcm.0000000000000932.

Hiemstra Y.L., Bijl P.V.D., Mahdiui M.E. et al. Myocardial work in nonobstructive hypertrophic cardiomyopathy: implications for outcome // J. Am. Soc. Echocardiogr.– 2020.– Vol. 33 (10).– P. 1201–1208. doi: https://doi.org/10.1016/j.echo.2020.05.010.

Kuznetsova T., D’hooge J., Kloch-Badelek M. et al. Impact of hypertension on ventricular-arterial coupling and regional myocardial work at rest and during isometric exercise // J. Am. Soc. Echocardiogr.– 2012.– Vol. 25 (8).– P. 882-890. doi: https://doi.org/10.1016/j.echo.2012.04.018.

Lang R.M., Badano L.P., Mor-Avi V. et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging // Eur. Heart J. Cardiovasc. Imaging.– 2015.– Vol. 16 (3).– P. 233–271. https://doi.org/10.1093/ehjci/jev014.

Loncaric F., Marciniak M., Nunno L. et al. Distribution of myocardial work in arterial hypertension: insights from non-invasive left ventricular pressure-strain relations // Int. J. Cardiovasc. Imaging.– 2020.– Epub ahead of print. PMID: 32789553. doi: https://doi.org/10.1007/s10554-020-01969-4.

Lustosa R.P., Bijl P.V.D., Mahdiui M.E. et al. Noninvasive myocardial work indices 3 months after ST-Segment elevation myocardial infarction: prevalence and characteristics of patients with postinfarction cardiac remodeling // J. Am. Soc. Echocardiogr.– 2020.– Vol. 33 (10).– P. 1172–1179. doi: https://doi.org/10.1016/j.echo.2020.05.001.

Lustosa R.P., Fortuni F., Bijl P.V.D. et al. Left ventricular myocardial work in the culprit vessel territory and impact on left ventricular remodelling in patients with ST-segment elevation myocardial infarction after primary percutaneous coronary intervention // Eur. Heart J. Cardiovasc. Imaging.– 2020. Epub ahead of print. PMID: 32642755. doi: https://doi.org/10.1093/ehjci/jeaa175.

Manganaro R., Marchetta S., Dulgheru R. et al. Echo­­cardiographic reference ranges for normal non-invasive myocardial work indices: results from the EACVI NORRE study // Eur. Heart J. Cardiovasc. Imaging.– 2018.– Vol. 20 (5).– P. 582–590. doi: https://doi.org/10.1093/ehjci/jey188.

Marwick T.H. Ejection fraction pros and cons: JACC state-of-the-art review // J. Am. Coll. Cardiol.– 2018.– Vol. 72 (19).– P. 2360–2379. doi: https://doi.org/10.1016/j.jacc.2018.08.2162.

Meimoun P., Abdani S., Stracchi V. et al. Usefulness of noninvasive myocardial work to predict left ventricular recovery and acute complications after acute anterior myocardial infarction treated by percutaneous coronary intervention // J. Am. Soc. Echocardiogr.– 2020.– Vol. 33 (10).– P. 1180–1190. doi: https://doi.org/10.1016/j.echo.2020.07.008.

Morbach C., Sahiti F., Tiffe T. et al. Myocardial work – correlation patterns and reference values from the population-based STAAB cohort study // PLOS ONE.– 2020.– Vol. 15 (10).– P. e0239684. doi: https://doi.org/10.1371/journal.pone.0239684.

Przewlocka-Kosmala M., Marwick T.H., Mysiak A. et al. Usefulness of myocardial work measurement in the assessment of left ventricular systolic reserve response to spironolactone in heart failure with preserved ejection fraction // Eur. Heart J. Cardiovasc. Imaging.– 2019.– Vol. 20 (10).– P. 1138–1146. doi: https://doi.org/10.1093/ehjci/jez027.

Russell K., Eriksen M., Aaberge L. et al. A novel clinical method for quantification of regional left ventricular pressure–strain loop area: a non-invasive index of myocardial work // Eur. Heart J.– 2012.– Vol. 33 (6).– P. 724–733. doi: https://doi.org/10.1093/eurheartj/ehs016.

Suga H. Total mechanical energy of a ventricle model and cardiac oxygen consumption // Am. J. Physiol. Heart and Circ. Physiol.– 1979.– Vol. 236 (3).– P. 498–505. doi: https://doi.org/10.1152/ajpheart.1979.236.3.h498.

Vecera J., Penicka M., Eriksen M. et al. Wasted septal work in left ventricular dyssynchrony: a novel principle to predict response to cardiac resynchronization therapy // Eur. Heart J. Cardiovasc. Imaging.– 2016.– Vol. 17 (6).– P. 624–632. doi: https://doi.org/10.1093/ehjci/jew019.

Wang C-L., Chan Y-H., Wu VC-C. et al. Incremental prognostic value of global myocardial work over ejection fraction and global longitudinal strain in patients with heart failure and reduced ejection fraction // Eur. Heart J. Cardiovasc. Imaging.– 2020.– Epub ahead of print. PMID: 32820318. doi: https://doi.org/10.1093/ehjci/jeaa162.

Yingchoncharoen T., Agarwal S., Popovic Z.B. et al. Normal ranges of left ventricular strain: a meta-analysis // J. Am. Soc. Echocardiogr.– 2013.– Vol. 26 (2).– P. 185–191. doi: https://doi.org/10.1016/j.echo.2012.10.008.